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Abstract 
Hippocampus is a complex brain structure embedded deep into the temporal lobe. Studies have shown that 

this structure gets affected by neurological and psychiatric disorders and it is a significant landmark for 

diagnosing neurodegenerative diseases. Hippocampus features play very significant roles in 

region-of-interest based analysis for disease diagnosis and prognosis. In this study, we have attempted to 

learn the embeddings of this important biomarker. As conventional metric learning methods for feature 

embedding is known to lacking in capturing semantic similarity among the data under study, we have trained 

deep Siamese convolutional neural network for learning metric of the hippocampus.  We have exploited 

Gwangju Alzheimer’s and Related Dementia cohort data set in our study. The input to the network was pairs 

of three-view patches (TVPs) of size 32 × 32× 3. The positive samples were taken from the vicinity of a 

specified landmark for the hippocampus and negative samples were taken from random locations of the brain 

excluding hippocampi regions. We have achieved 98.72% accuracy in verifying hippocampus TVPs. 
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I. INTRODUCTION 

The Hippocampus, a structure of the brain's limbic 

system, is responsible to be playing key roles in 

memory and learning-process[1]. Extensive 

studies of this part revealed that atrophy of this 

region has clinical consequences as it is the earliest 

and most severely affected structure in terms of 

volume and shape by several neuropsychiatric 

disorders such as neurodegenerative diseases, 

epilepsy, etc.[2-4]. Hippocampus looks like 

sea-horses as its name suggests[5]. In the coronal 

section, the shape is like a peninsula of gray matter 

surrounded by white matter appearing both the 

hemispheres. We have depicted three different 

views (axial, sagittal, and coronal) of hippocampus in 

the figure I. This structure under study is known to 

be an important biomarker for Alzheimer’s disease

and other neurodegenerative diseases. So, this is of 

great importance to learn a metric for hippocampus 

embeddings which can be further utilized in medical 

image processing tasks starting from localization, 

registration, etc.  to diseases prognosis and 

diagnosis.  

Fig.1. Hippocampus in sagittal, axial and coronal 

view (from left to right) 

The task is to devise a model that transforms an 
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input pattern into an intermediary representation 

such that a preliminary metric in that intermediary 

representation space (ex. the Euclidean distance) 

approximates the semantic distance in the input 

space. In this study, a convolutional neural network 

(CNN) model was trained and tested on Gwangju 

Alzheimer’s and related dementia (GARD) dataset.

The Siamese architecture along with contrastive 

loss function was considered for learning the 

representation of the hippocampus. 

We have organized the paper as follows: In section 

II, we have described preliminary concepts of a 

metric followed by the limitation of conventional 

metric learning and the reason for relying on deep 

based approaches. In section III, we briefly 

introduced the dataset. Section IV illustrates the 

structural details and design parameters of the 

Siamese network.  Section V elaborately represents 

the experimental setups, data preparation processes, 

training criteria, and performances.  Testing 

performance is presented in section VI. Section VII 

concludes the paper. 

II. PRELIMINARY CONCEPTS

Suppose, we are given a dataset X. Two instances 

of the dataset are xi and xj. If we want to measure the 

similarity or dissimilarity, we need to measure the 

distance, d of these data points. To measure the 

distances, we use a distance metric. Any distance 

measure needs to satisfy the following four 

properties to be a metric [6].   

(a) Nonnegativity: 

 (1) 

(b) Symmetry: 

 (2) 

(c) Triangular inequality: 

 (3)

(d) Identity of indiscernible: 

 (4) 

The commonly used distance metrics are variants of 

Chebyshev distance, cosine similarity, bilinear 

similarity, geodesic distance, etc. But these primitive 

metrics are sensitive to the scale and dimensions of 

the features. Furthermore, these cannot use 

contextual side information for similarity calculation 

[7,8]. As a result, most of the applications which use 

these metrics do not provide accurate results. 

 As an example, in figure 2, the conventional metrics 

are not capable of concluding that the semantically 

same objects are similar to each other as the 

semantically different objects are dissimilar. So, we 

need metric learning algorithms that will incorporate 

the internal properties of the data set as well as 

consider the user perspectives to find similarity 

and/or dissimilarity. Facing the limitation of these 

primitive metrics which do not consider the human 

perception of similarity/dissimilarity concepts, 

metric learning algorithms are developed. 

Fig.2. Illustrating the metric learning concept; the 

same color bubbles are semantically similar while 

different colors indicate that bubbles are 

semantically dissimilar. Metric Learning Algorithm 

bringing similar objects nearer while pushing the 

semantically different object away 

 The first metric learning algorithm, developed by 

Xing et all in 2002 [9], basically learns the 

Mahalanobis matrix. The distance is defined by: 

   (5) 

where M-1 is the Mahalanobis distance, which is a 

positive semi-definite matrix that satisfies the 

metric conditions. The M
-1

 parameterizes the 

distance. When M
-1

 is the identity matrix, the 

distance is equivalent to Euclidean distance. The 

Mahalanobis matrix M
-1

 scales the features and 

utilizes their correlations to compute distances 

between data more effectively[6].

The main task of conventional distance metric 

learning algorithms is to learn M
-1

 to minimize a 

constraint cost function. These methods are not 

powerful enough to capture the nonlinear 

relationship among data points [10]. Kernel trick can 

overcome the problem and are being widely used to 

implicitly transform the sample data points into a 

high dimensional feature subspace. Metric learning 

methods then obtain a metric in the projected feature 

subspace. Despite getting feasible solutions to some 

extent, these methods suffer from the scalability 
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problems as it is difficult to get the explicit nonlinear 

mapping functions.  

Rather than conventional metric learning 

approaches, we prefer deep metric learning (DML) 

for a couple of reasons. Firstly, DML can learn 

similarity measures without an explicit description of 

features[7]. Secondly, DML methods do not require 

data to be heavily pre-processed. Thirdly, it is very 

easy to implement and deploy a deep-net 

framework for a wide area of applications ranging 

from face verification to diseases prediction[11-14]. 

Fourthly, zero-shot, and one-shot learning require 

very small or no dataset for training the 

network[15-16]. Finally, most of the machine 

vision problems solved by deep neural networks are 

showing state-of-the-art performance [17]. For 

example, Face Net[18,19], Deep Face[20], etc. 

Machine vision community concentrating on deep 

distance metric learning for the last few 

years[21,22], and a lot of methods have been 

devised. 

However, DML algorithms are good at addressing 

the nonlinearity and scalability problems which are 

the main limitations suffered by conventional metric 

learning algorithms. The common mechanism of 

deep based algorithms is to train a CNN for 

producing characteristic description i,e, a higher 

level of abstraction for each input vector so that a 

loss function related to object distance is minimized. 

Several state-of-the-art deep networks are being 

used for metric learning. In this study, the Siamese 

network [23] has been used for learning the desired 

metric. 

 

 

III. DATASET  

 

We have exploited Gwangju Alzheimer’s and 

Related Dementia (GARD) cohort data set in this 

study[25–27].  The imaging was performed at 

Chosun University Hospital. These contiguous 0.9 

mm MPRAGE images of the whole brain were 

acquired using a 1.5T magnetic resonance scanner 

(Magnetom Avanto, Siemens) with the following 

parameters: relaxation time (TR) = 1800 ms; echo 

time(TE) = 3.43 ms; TI = 1100 ms; flip angle: 15; 

field of view = 224x224; matrix = 320x320; number 

of slices = 178. 

 

 

There are 326 sMRI in the dataset among which 20 

sMRI were randomly selected for training, and the 

rest was used for testing. The intensities of each 

sMRI voxels were normalized so that the mean is 

zero and variance is one. After normalizing the 

intensities, we have generated 16 positive 

three-view patches (TVPs) and 16 negative TVPs 

from each sMRI. From the training TVPs, we have 

randomly selected 32 of them (16 positives and 16 

negatives) for creating a database to be used for 

evaluating the model with the test set.  

 

 

 
Fig.3. Siamese network for metric learning 

 

 
 

IV. METHODOLOGY  

 
 In this study, we have deployed the Siamese 

network as depicted in figure 3 to learn the deep 

metric which can differentiate TVPs of hippocampus 

from non-hippocampi TVPs. Our CNN consists of a 

pair of networks sharing the same weights and loss 

function. Siamese network learned a function that 

maps input TVPs into a target space such that the 

Euclidean distance in the target space approximates 

the semantic distance between the TVPs. The 

learning process minimizes contrastive [14] loss 

function which ensures that the similarity metric is 

small for a pair of hippocampus-TVPs and large for 

distinct-region TVPs. The CNN works as the 

mapping function from input to target space.  In 

each channel of the twin, (as depicted in figure 4) 

there are four convolution layers and one fully 

connected layer. There is a batch normalization layer 

after each convolution layer. The last layer of the 

twin-CNN is the Euclidean distance between the 

feature embedding of the two different networks. 
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Fig.4. One channel in the twin of the Siamese 

network for metric learning 

 

The input to the network is a pair of TVPs (xi,xj) 

and a label yij. (xi,xj) are passed to the CNNs and 

each CNN work as a mapping function. The pair of 

CNNs yield representation F(xi) and F(xj) for TVP 

xi and TVP xj respectively. The cost module which 

is the Euclidean distance operator generates the 

distance ŷ between F(xi) and F(xj). 

 

We have used a contrastive loss function for 

training DML network. The loss function is defined in 

equation 6. 

 

         (6) 

 

Here, y is the actual distance (0 or 1) and ŷ is 

predicted distance between the input pairs. λ=2 is 

used as a distance margin constraint. The constraint 

defines a radius in target space around Euclidean 

distance. Unlikely pairs have a contribution to the 

loss if their distance is within the defined margin.  

 

 
 

V. EXPERIMENTAL SETUP 

 

5.1. Platform 

 The experiment was performed with a python 3.6 

environment. We used the TensorFlow GPU 1.8, 

keeping Keras as the backend. The operating 

system was Windows 10 installed on an “Intel(R) 

Xeon (R) Silver 4114 @ 2.20 GHz, 10 cores and 20 

logical processors with a 32 GB RAM” machine.           

The GPU was NVIDIA Quadro P4000. Multi-image 

analysis GUI (Mango) was used for viewing and 

navigating throw the neuroimaging informatics 

technology initiative (NIFTI) images.  

 

 

Fig.5. Landmark used for hippocampus TVP 

generation 

 

5.2. Dataset Preparation 

 The data set preparation process is summarized in 

algorithm I. At first,  we have manually marked the 

scans for hippocampus landmarks. The sagittal view 

of the considered landmark position of the left 

hippocampus is illustrated in figure 5. Then, two 

different sets of TVPs are generated. Step 3 to step 

5 of algorithm 1, generates the hippocampal TVPs 

(i,e. positive sample) while step 6 to step 8 

generates non-hippocampi TVPs (i,e. negative 

sample). The positive samples were randomly 

produced from 4×4×4 cube centering at a manually 

labeled hippocampi location. The negative samples 

are produced from other regions of the brain. We 

have generated 320 TVPs for each set.  

 

 

Fig.6. Training and validation loss of deep metric 

learning network 

 

The pair construction process is described in step 9 

to step 13 of algorithm I. The pair selection steps 

ensure keeping an equal number of similar pairs and 

dissimilar pairs for both training and testing. Input 

data, consist of a pair of 32×32×3 TVPs, taken from 

positive and negative samples. A sample for training 
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can be denoted as ([xi, xj], yij), where xi, xj are TVPs 

and yij is the label. yij=1 if xi is from the same regions 

as xj, 0 (zero) otherwise. To avoid bias in training,  

we randomly shuffled the data at the end of the 

preparation process.   

 

Algorithm I: Data Preparation Algorithm 

 

Input: I: A sequence of preprocessed structured 

magnetic resonance images; H: a sequence of 

hippocampus locations for the images in I  

 

Output: D: A data set consisting of pairs ([xi, xj], yij) 

where xi and xj are two TVPs and yij is the label  

 

 

1 H= {set of hippocampus locations for i ɛ I} 

2 Repeat step 2 to 14 for each mri ɛ I  

3 Rh= {set of random voxel points from the 

reference cube formed centering locations in 

H} 

4 Repeat step 5 for each point(x,y,z) ɛ Rh  

5 axial= mri[x, y-16:y+16, z-16:z+16]; 

sagittal= [x-16:x+16, y, z-16:z+16]; 

coronal= [x-16:x+16, y-16:y+16, z]; 

TVP= [axial sagittal coronal] 

X1=append (X1, TVP) 

6 Rnh= {set of random voxel point from the mri 

excluding hippocampus locations} 

7 Repeat step 8 for each point(x, y, z) ɛ Rnh  

8 axial= mri[x, y-16:y+16, z-16:z+16];  

sagittal= [x-16:x+16, y, z-16:z+16]; 

coronal= [x-16:x+16, y-16:y+16, z] 

TVP= [axial sagittal coronal] 

X2=append (X2, TVP) 

9 Repeat step 10 to 13 for each tvpi  ɛ X1  

10 Repeat step 11 for each tvpj ɛ X1  

11 sample=([tvpi, tvpj], 1) 

D.append(sample) 

12 Repeat step 13 for each tvpj ɛ X2  

13 sample=(tvpi, tvpj,0) 

D.append(sample) 

14 

15 

shuffle(D) 

return D 

 

For testing the trained model, we have generated  

16 random TVPs for each class i, e, positive and 

negative class from the training set to form the 

database. The TVPs in the database is compared 

with the test TVPs for finding the dissimilarity 

scores. We have taken the minimum distance score 

among all the scores for all TVPs in the database and 

the label of the minimum scored database TVP was 

considered as the label of test TVP. 

 

5.3. Training 

 We have used a contrastive loss function (equation 

6) for training DML network. The distance margin 

constraint in the contrastive loss was kept 2. The 

constraint defines a radius in target space around 

Euclidean distance. Unlikely pairs have a 

contribution to the loss if their distance is within the 

defined margin.  

 We have initialized the weight by a normal 

distribution with zero mean and a standard deviation 

of 0.01. The biases were initialized for this network 

from a normal distribution with different mean (0.5) 

and the same standard deviation (0.01). For the fully 

connected layers, we have initialized biases 

differently i, e. the mean of the normal distribution 

was kept zero with standard deviation 0.2.  

 The Adam optimizer is used with a mini-batch size 

of 32 and an initial learning rate of 0.001. The decay 

of the learning rate was kept uniform (0.1) if there is 

no update in the loss for consecutive three epoch. 

The model has used a grid search to perform the 

hyper-parameter selection.  

We have trained the presented models for 150 

epochs with a batch size of 32. 10-fold 

cross-validation on the training TVPs was 

performed. The training performance of the metric 

learning network is depicted in figure 5.   

 The reason for the better validation performance 

than the training is that at validation time the dropout 

layer and regularizers in different layers are turned 

off. Another reason is that training loss is calculated 

as an average of all batch-wise losses in each epoch. 

On the other hand, the validation loss is calculated at 

the end of each epoch. So, in our case, the validation 

loss is lower than the training loss.  

 

VI. RESULT 

 
6.1 Evaluation Criteria 

 For interpreting the score, we consider the 

multiplicative inverse of the Euclidean distances 

yielded by the model. The additive factor 1 (one) 

prevents divide by zero error. If the model output is 

y for any pair (xi, xj), we have transformed y to Y 

according to equation 7. 
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                         (7) 

Here, y is the un-normalized Euclidean distance of 

(i.e., the dissimilarity between) two TVPs in the 

target space and Y is the normalized similarity score 

in the open interval [0,1]. This transformation 

makes sure the range of similarity is between the 

interval [0,1] while do not alter the inverse relation 

between similarity and dissimilarity.  

 

 For testing the DML network, we consider the 

accuracy in verifying whether the TVPs are 

containing the hippocampus or not. If the minimum 

score found with the positive class database, we 

consider the test TVP was taken from the 

hippocampus region, and if the minimum score is 

found for the negative class database then the TVP 

under observation is considered non-hippocampi.  

The accuracy of the model is calculated based on 

equation 8. 

           (8) 

 Here, TP is the number of TVPs that are drawn 

from hippocampus regions and matched with the 

positive class database, TN is the number of TVPs 

that are drawn from the non-hippocampus regions 

and matched with the negative class database, FP is 

the number of TVPs drawn from the 

non-hippocampi region but matched with the 

positive class database, FN is the number of TVPs 

drawn from hippocampus regions but matched with 

the negative class database.  

 
 

6.2 Result Analysis 

 Table I presents class label verification results 

along with a confidence score of eight TVPs from 

different sMRI scans from the GARD data set. The 

TVPs generated from hippocampus voxels were 

classified as hippocampus TVPs.  And the TVPs 

generated from other locations were classified as 

non-hippocampus TVPs. The total accuracy we 

have achieved is 98.72% in finding similar TVPs. We 

have provided a normalized similarity score for 8 

test TVPs from eight different test sMRI. MRI ID is 

the identification number of each scan. Voxel 

positions indicate the reference locations for 

generating TVP. Actual and verified regions define 

the regions from where the sample was generated 

and the classification result for model respectively. 

D is the normalized similarity score of the sample 

compared with the stored database. The distance 

scores are normalized by equation 7 to get the 

similarity score. 

 

Table 1. Performance evaluation of the metric 

learning method on GARD data. D is similarity 

scores (normalized using equation 7) for eight 

different TVPs of different sMRI from the GARD 

dataset. The similarity indicates that the presented 

TVP is similar to the related class in the stored 

database with given a confidence score 

MRI ID 
Voxel 

Position  
Actual 

Region? 
Verified 
Region? D 

14071906 77,127,82 Y Y 0.97 

14051804 92,157,84 Y Y 0.89 

14080210 66,159,95 N N 0.96 

17101603 82,141,80 Y Y 0.86 

14051110 122,76,145 N N 0.93 

17092001 145,88,133 N N 0.87 

15031904 124,72,153 N N 0.91 

15031904 85,152,90 Y Y 0.82 

 

 In our study, we have avoided 3D image 

computation by considering TVPs. This helps to 

generate training data so that overfitting can be 

avoided. We have trained and tested the Siamese 

CNN model (figure 4) for robust feature learning. 

The findings in this study might be useful in 

localization of cerebral landmarks and other areas of 

diagnosis and prognosis of diseases from sMRI.  

 

 

 
VII. CONCLUSION 

 
  In this work, we have learned hippocampus 

features using deep CNN. Rather than using 3D 

information, we have generated TVPs from the 

vicinity of a specific landmark of the hippocampus. 

The model was trained and tested based on the 

TVPs. The proposed Siamese network architecture 

provides robust accuracy in learning hippocampus 

features. We have observed 98.72% accuracy in 

verifying hippocampus TVPs by the proposed model. 

This achievement has further application in sMRI 

processing and analysis.  
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