DOI QR코드

DOI QR Code

Metallic Artifacts on MR Imaging and Methods for Their Reduction

MR 영상에서의 금속 인공물과 감소방법

  • Choo, Hye Jung (Department of Radiology, Inje University Busan Paik Hospital) ;
  • Lee, Sun Joo (Department of Radiology, Inje University Busan Paik Hospital) ;
  • Lee, Young Han (Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine)
  • 추혜정 (인제대학교 부산백병원 영상의학과) ;
  • 이선주 (인제대학교 부산백병원 영상의학과) ;
  • 이영한 (연세대학교 의과대학 영상의학교실, 방사선의과학연구소, 임상영상데이터사이언스센터)
  • Received : 2019.10.22
  • Accepted : 2019.12.17
  • Published : 2020.01.01

Abstract

Metallic artifacts on MR imaging are typically induced by differences in magnetic susceptibility between the metallic implant and surrounding tissue. Conventional techniques for metal artifact reduction require MR machines with low field strength, shift in the frequency-encoding and phase-encoding directions according to the axis of metallic implant, increased receiver bandwidth and matrix, decreased slice thickness, and utilization of the short tau inversion recovery or Dixon method for fat-suppression. Slice-encoding for metal artifact correction and multi-acquisition variable-resonance image combination can dramatically reduce the number of metallic artifacts. However, these sequences have a considerably long acquisition time. Furthermore, the recently developed acceleration techniques including compressed sensing can solve this problem.

MR 영상에서 금속 인공물은 금속 삽입물과 주변 조직의 magnetic susceptibility의 차이에 의해 나타난다. 금속 인공물을 줄이는 일반적인 방법은 낮은 자장의 MR 장비를 사용하고, 금속물의 방향에 따라 주파수부호화 방향과 위상부호화 방향을 바꾸고, receiver bandwidth와 matrix를 높이며, 절편 두께를 작게 하고 short tau inversion recovery나 Dixon 기법을 사용하여 fat-suppression을 하는 것이다. Slice-encoding for metal artifact correction이나 multi-acquisition variable-resonance image combination을 통해 보다 강력하게 금속 인공물을 줄일 수 있다. 그러나 이 방법의 최대 단점은 촬영 시간이 길다는 것이나 최근 개발된 compressed sensing과 같은 고속화 기법을 통해 이를 해결할 수 있게 되었다.

Keywords

Acknowledgement

This material is based upon work supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) under industrial Technology Innovation Program. No.10062728.

References

  1. Thiele K, Perka C, Matziolis G, Mayr HO, Sostheim M, Hube R. Current failure mechanisms after knee arthroplasty have changed: polyethylene wear is less common in revision surgery. J Bone Joint Surg Am 2015;97:715-720 https://doi.org/10.2106/JBJS.M.01534
  2. Rajaee SS, Campbell JC, Mirocha J, Paiement GD. Increasing burden of total hip arthroplasty revisions in patients between 45 and 64 years of age. J Bone Joint Surg Am 2018;100:449-458 https://doi.org/10.2106/JBJS.17.00470
  3. Talbot BS, Weinberg EP. MR imaging with metal-suppression sequences for evaluation of total joint arthroplasty. Radiographics 2015;36:209-225 https://doi.org/10.1148/rg.2016150075
  4. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 1996;23:815-850 https://doi.org/10.1118/1.597854
  5. Koch KM, Hargreaves BA, Pauly KB, Chen W, Gold GE, King KF. Magnetic resonance imaging near metal implants. J Magn Reson Imaging 2010;32:773-787 https://doi.org/10.1002/jmri.22313
  6. Jungmann PM, Agten CA, Pfirrmann CW, Sutter R. Advances in MRI around metal. J Magn Reson Imaging 2017;46:972-991 https://doi.org/10.1002/jmri.25708
  7. Ariyanayagam T, Malcolm PN, Toms AP. Advances in metal artifact reduction techniques for periprosthetic soft tissue imaging. Semin Musculoskelet Radiol 2015;19:328-334 https://doi.org/10.1055/s-0035-1563734
  8. Dillenseger J, Moliere S, Choquet P, Goetz C, Ehlinger M, Bierry G. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates. Skeletal Radiol 2016;45:677-688 https://doi.org/10.1007/s00256-016-2338-2
  9. Eustace S, Jara H, Goldberg R, Fenlon H, Mason M, Melhem ER, et al. A comparison of conventional spinecho and turbo spin-echo imaging of soft tissues adjacent to orthopedic hardware. AJR Am J Roentgenol 1998;170:455-458 https://doi.org/10.2214/ajr.170.2.9456963
  10. Khodarahmi I, Isaac A, Fishman EK, Dalili D, Fritz J. Metal about the hip and artifact reduction techniques: from basic concepts to advanced imaging. Semin Musculoskelet Radiol 2019;23:e68-e81 https://doi.org/10.1055/s-0039-1687898
  11. Zou YF, Chu B, Wang CB, Hu ZY. Evaluation of MR issues for the latest standard brands of orthopedic metal implants: plates and screws. Eur J Radiol 2015;84:450-457 https://doi.org/10.1016/j.ejrad.2014.12.001
  12. Koff MF, Shah P, Koch KM, Potter HG. Quantifying image distortion of orthopedic materials in magnetic resonance imaging. J Magn Reson Imaging 2013;38:610-618 https://doi.org/10.1002/jmri.23991
  13. Lee MJ, Kim S, Lee SA, Song HT, Huh YM, Kim DH, et al. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 2007;27:791-803 https://doi.org/10.1148/rg.273065087
  14. Aboelmagd SM, Malcolm PN, Toms AP. Magnetic resonance imaging of metal artifact reduction sequences in the assessment of metal-on-metal hip prostheses. Reports Med Imaging 2014;7:65-74
  15. Feng DX, McCauley JP, Morgan-Curtis FK, Salam RA, Pennell DR, Loveless ME, et al. Evaluation of 39 medical implants at 7.0T. Br J Radiol 2015;88:20150633 https://doi.org/10.1259/bjr.20150633
  16. Vandevenne JE, Vanhoenacker FM, Parizel PM, Butts Pauly K, Lang RK. Reduction of metal artefacts in musculoskeletal MR imaging. JBR-BTR 2007;90:345-349
  17. Chang EY, Bae WC, Chung CB. Imaging the knee in the setting of metal hardware. Magn Reson Imaging Clin N Am 2014;22:765-786 https://doi.org/10.1016/j.mric.2014.07.009
  18. Kumar NM, De Cesar Netto C, Schon LC, Fritz J. Metal artifact reduction magnetic resonance imaging around arthroplasty implants: the negative effect of long echo trains on the implant-related artifact. Invest Radiol 2017;52:310-316 https://doi.org/10.1097/RLI.0000000000000350
  19. Hargreaves BA, Worters PW, Pauly KB, Pauly JM, Koch KM, Gold GE. Metal-induced artifacts in MRI. AJR Am J Roentgenol 2011;197:547-555 https://doi.org/10.2214/AJR.11.7364
  20. Bachschmidt TJ, Sutter R, Jakob PM, Pfirrmann CW, Nittka M. Knee implant imaging at 3 Tesla using high-bandwidth radiofrequency pulses. J Magn Reson Imaging 2015;41:1570-1580 https://doi.org/10.1002/jmri.24729
  21. Buckwalter KA. Optimizing imaging techniques in the postoperative patient. Semin Musculoskelet Radiol 2007;11:261-272 https://doi.org/10.1055/s-2008-1038315
  22. Ulbrich EJ, Sutter R, Aguiar RF, Nittka M, Pfirrmann CW. STIR sequence with increased receiver bandwidth of the inversion pulse for reduction of metallic artifacts. AJR Am J Roentgenol 2012;199:W735-W742 https://doi.org/10.2214/AJR.11.8233
  23. Cha JG, Jin W, Lee MH, Kim DH, Park JS, Shin WH, et al. Reducing metallic artifacts in postoperative spinal imaging: usefulness of IDEAL contrast-enhanced T1- and T2-weighted MR imaging--phantom and clinical studies. Radiology 2011;259:885-893 https://doi.org/10.1148/radiol.11101856
  24. Cha JG, Hong HS, Park JS, Paik SH, Lee HK. Practical application of iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) imaging in minimizing metallic artifacts. Korean J Radiol 2012;13:332-341 https://doi.org/10.3348/kjr.2012.13.3.332
  25. Muller GM, Mansson S, Muller MF, Von Schewelov T, Nittka M, Ekberg O, et al. MR imaging with metal artifact-reducing sequences and gadolinium contrast agent in a case-control study of periprosthetic abnormalities in patients with metal-on-metal hip prostheses. Skeletal Radiol 2014;43:1101-1112 https://doi.org/10.1007/s00256-014-1893-7
  26. Khodarahmi I, Nittka M, Fritz J. Leaps in technology: advanced MR imaging after total hip arthroplasty. Semin Musculoskelet Radiol 2017;21:604-615 https://doi.org/10.1055/s-0037-1606135
  27. Cho ZH, Kim DJ, Kim YK. Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys 1988;15:7-11 https://doi.org/10.1118/1.596162
  28. Butts K, Pauly JM, Gold GE. Reduction of blurring in view angle tilting MRI. Magn Reson Med 2005;53:418-424 https://doi.org/10.1002/mrm.20375
  29. Chen CA, Chen W, Goodman SB, Hargreaves BA, Koch KM, Lu W, et al. New MR imaging methods for metallic implants in the knee: artifact correction and clinical impact. J Magn Reson Imaging 2011;33:1121-1127 https://doi.org/10.1002/jmri.22534
  30. Deligianni X, Bieri O, Elke R, Wischer T, Egelhof T. Optimization of scan time in MRI for total hip prostheses: SEMAC tailoring for prosthetic implants containing different types of metals. Rofo 2015;187:1116-1122 https://doi.org/10.1055/s-0041-104893
  31. Filli L, Jud L, Luechinger R, Nanz D, Andreisek G, Runge VM, et al. Material-dependent implant artifact reduction using SEMAC-VAT and MAVRIC: a prospective MRI phantom study. Invest Radiol 2017;52:381-387 https://doi.org/10.1097/RLI.0000000000000351
  32. Den Harder JC, Van Yperen GH, Blume UA, Bos C. Ripple artifact reduction using slice overlap in slice encoding for metal artifact correction. Magn Reson Med 2015;73:318-324 https://doi.org/10.1002/mrm.25127
  33. Park C, Lee E, Yeo Y, Kang Y, Lee JW, Ahn JM, et al. Spine MR images in patients with pedicle screw fixation: comparison of conventional and SEMAC-VAT sequences at 1.5 T. Magn Reson Imaging 2018;54:63-70 https://doi.org/10.1016/j.mri.2018.08.002
  34. Hayter CL, Koff MF, Shah P, Koch KM, Miller TT, Potter HG. MRI after arthroplasty: comparison of MAVRIC and conventional fast spin-echo techniques. AJR Am J Roentgenol 2011;197:W405-W411 https://doi.org/10.2214/AJR.11.6659
  35. Choi SJ, Koch KM, Hargreaves BA, Stevens KJ, Gold GE. Metal artifact reduction with MAVRIC SL at 3-T MRI in patients with hip arthroplasty. AJR Am J Roentgenol 2015;204:140-147 https://doi.org/10.2214/AJR.13.11785
  36. Koch KM, Brau AC, Chen W, Gold GE, Hargreaves BA, Koff M, et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med 2011;65:71-82 https://doi.org/10.1002/mrm.22523
  37. Liebl H, Heilmeier U, Lee S, Nardo L, Patsch J, Schuppert C, et al. In vitro assessment of knee MRI in the presence of metal implants comparing MAVRIC-SL and conventional fast spin echo sequences at 1.5 and 3 T field strength. J Magn Reson Imaging 2015;41:1291-1299 https://doi.org/10.1002/jmri.24668
  38. Ai T, Padua A, Goerner F, Nittka M, Gugala Z, Jadhav S, et al. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging. Invest Radiol 2012;47:267-276 https://doi.org/10.1097/RLI.0b013e318240a919
  39. Den Harder JC, Van Yperen GH, Blume UA, Bos C. Off-resonance suppression for multispectral MR imaging near metallic implants. Magn Reson Med 2015;73:233-243 https://doi.org/10.1002/mrm.25126
  40. Hargreaves BA, Chen W, Lu W, Alley MT, Gold GE, Brau AC, et al. Accelerated slice encoding for metal artifact correction. J Magn Reson Imaging 2010;31:987-996 https://doi.org/10.1002/jmri.22112
  41. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195 https://doi.org/10.1002/mrm.21391
  42. Fritz J, Ahlawat S, Demehri S, Thawait GK, Raithel E, Gilson WD, et al. Compressed sensing SEMAC: 8-fold accelerated high resolution metal artifact reduction MRI of cobalt-chromium knee arthroplasty implants. Invest Radiol 2016;51:666-676 https://doi.org/10.1097/RLI.0000000000000317
  43. Fritz J, Fritz B, Thawait GK, Raithel E, Gilson WD, Nittka M, et al. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the timeneutral use of SEMAC. Skeletal Radiol 2016;45:1345-1356 https://doi.org/10.1007/s00256-016-2437-0
  44. De Cesar Netto C, Fonseca LF, Fritz B, Stern SE, Raithel E, Nittka M, et al. Metal artifact reduction MRI of total ankle arthroplasty implants. Eur Radiol 2018;28:2216-2227 https://doi.org/10.1007/s00330-017-5153-9