References
- Aratake, S., Morita, H., Arima, T. 2011. Bending creep of glued laminated timber (glulam) using sugi (Cryptomeria japonica) laminae with extremely low Young's modulus for the inner layers. Journal of Wood Science 57(4): 267-275. https://doi.org/10.1007/s10086-011-1175-0
- Awaludin, A., Hirai, T., Hayashikawa, T., Sasaki, Y. 2008. Load-carrying capacity of steel-to-timber joints with a pretensioned bolt. Journal of Wood Science 54(5): 362-368. https://doi.org/10.1007/s10086-008-0962-8
- Bengtsson, C. 2001. Mechano-sorptive bending creep of timber-influence of material parameters. Holz als Roh-und Werkstoff 59(4): 229-236. https://doi.org/10.1007/s001070100217
- Bengtsson, C., Kliger, R. 2003. Bending creep of hightemperature dried spruce timber. Holzforschung 57(1): 95-100. https://doi.org/10.1515/HF.2003.015
- Byeon, J.W., Kim, T.H., Yang, J.K., Byeon, H.S., Park, H.M. 2017. Bending creep property of crosslaminated woods made with six domestic species. Journal of the Korean Wood Science and Technology 45(6): 689-702. https://doi.org/10.5658/WOOD.2017.45.6.689
- Chen, C.J., Lee, T.L., Jeng, D.S. 2003. Finite element modeling for the mechanical behavior of doweltype timber joints. Computers & Structures 81(30-31): 2731-2738. https://doi.org/10.1016/S0045-7949(03)00338-9
- Epmeier, H., Johansson, M., Kliger, R., Westin, M. 2007. Bending creep performance of modified timber. Holz als Roh-und Werkstoff 65(5): 343-351. https://doi.org/10.1007/s00107-007-0189-1
- Guan, Z., Rodd, P. 2001. DVW—Local reinforcement for timber joints. Journal of structural engineering 127(8): 894-900. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:8(894)
- Hong, S.I., Park, J.C. 2006. Studies on evaluation for long-term structural performance of pinus densiflora Sieb. Et Zucc. (I): Shear creep and mechanosorptive behavior of drift pin jointed lumber. Journal of the Korean Wood Science and Technology 34(5): 11-18.
- Hunt, D.G. 1999. A unified approach to creep of wood. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 455(1991): 4077-4095.
- Lee, I.H., Song, Y.J., Hong, S.I. 2017. Evaluation of the moment resistance of reinforced wooden gusset to glulam joint. Journal of the Korean Wood Science and Technology 45(1): 53-61. https://doi.org/10.5658/WOOD.2017.45.1.53
- O'Ceallaigh, C., Harte, A., Sikora, K., McPolin, D. 2014. Mechano-sorptive creep of FRP reinforced laminated timber beams. Civil Engineering Research in Ireland, CERI 2014. Queen's University Belfast, 28-29 August 2014.
- Ranta-Maunus, A., Kortesmaa, M. 2000. Creep of timber during eight years in natural environments. In World Conference on Timber Engineering. Whistler, CA, Vol. 31.
- Sjödin, J., Johansson, C.J. 2007. Influence of initial moisture induced stresses in multiple steel-totimber dowel joints. Holz als Roh-und Werkstoff 65(1): 71-77. https://doi.org/10.1007/s00107-006-0136-6
- Sjödin, J., Johansson, C.J., Petersson, H. 2004. Influence of moisture induced stresses in steel-to-timber dowel joints. In Proceedings of the 8th world conference on timber engineering WCTE.
- Svensson, S., Toratti, T. 2002. Mechanical response of wood perpendicular to grain when subjected to changes of humidity. Wood Science and Technology 36(2): 145-156. https://doi.org/10.1007/s00226-001-0130-4
- Xu, B.H., Taazount, M., Bouchaïr, A., Racher, P. 2009. Numerical 3D finite element modelling and experimental tests for dowel-type timber joints. Construction and Building Materials 23(9): 3043-3052. https://doi.org/10.1016/j.conbuildmat.2009.04.00