References
- Abdeli, F., Rigane, G., Salem, B., El Arbi., Aifa, S., Cherif, S. 2019. Use of surfactants and biosurfactants in oil recovery processing and cellulose hydrolysis. Journal of Bacteriology and Mycology 6(5): 1-4.
- Alinejad, M., Henry, C., Nikafshar, S., Gondaliya, A., Bagheri, S., Chen, N., Singh, S.K., Hodge, D.B., Nejad, M. 2019. Lignin-based polyurethanes: Opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers 11(7): 1-21.
- Anita, S.H., Fitria., Solihat, N.N., Sari, F.P., Risanto, L., Fatriasari, W., Hermiati, E. 2020. Optimization of microwave-assisted oxalic acid pretreatment of oil palm empty fruit bunch for production of fermentable sugars. Waste and Biomass Valorization 11(6): 2673-2687. https://doi.org/10.1007/s12649-018-00566-w
- Arnieyanto, D.R. 2018. Praperlakuan pemanasan gelombang mikto dan asam untuk peningkatan hidrolisis selulosa daun tebu (Saccharum officinarum) oleh selulase. Tesis Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pakuan (In Indonesia).
- Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., Saddler, J. 2006. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. Journal of Biotechnology 125(2): 198-209. https://doi.org/10.1016/j.jbiotec.2006.02.021
- Bin, Y., Chen, H. 2010. Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresource Technology 101(3): 9114-9119. https://doi.org/10.1016/j.biortech.2010.07.033
- Cheng, N., Yamamoto, Y., Koda, K., Tamai, Y., Uraki, Y. 2014. Amphipathic lignin derivatives to accelerate simultaneous saccharification and fermentation of unbleached softwood pulp for bioethanol production. Bioresource Technology 173: 104-109. https://doi.org/10.1016/j.biortech.2014.09.093
- Cheng, N., Koda, K., Tamai, Y., Yamamoto, Y., Takasuka, T.E., Uraki, Y. 2017. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresource Technology 232: 126-132. https://doi.org/10.1016/j.biortech.2017.02.018
- Choudhary, R., Umagiliyage, A.L., Liang, Y., Siddaramu, T., Haddock, J., Markevicius, G. 2012. Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass Bioenergy 39: 218-226. https://doi.org/10.1016/j.biombioe.2012.01.006
- Daorattanachai, P., Viriya-empikul, N., Laosiripoiana, N., Faungnawakij, K. 2013. Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water. Bioresource Technology 144: 504-512. https://doi.org/10.1016/j.biortech.2013.06.124
- Elgharbawy, A.A., Alam, M.Z., Moniruzzaman, M., Goto, M. 2016. Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochemical Engineering Journal 109: 252-267. https://doi.org/10.1016/j.bej.2016.01.021
- Eriksson, T., Borjesson, J., Tjerneld, F. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology 31(3): 353-364. https://doi.org/10.1016/S0141-0229(02)00134-5
- Fajriutami, T., Fatriasari, W., Hermiati, E. 2016. Effects of Alkaline pretreatment of sugarcane bagasse on pulp characterization and reducing sugar production. Jurnal Riset Industri 10(3): 147-161 (In Indonesia).
- Fatriasari, W., Supriyanto, Iswanto, A.H. 2015. The kraft pulp and paper properties of sweet sorghum bagasse (Sorghum bicolor L Moench). Journal of Engineering and Technological Sciences 47(2): 149-159. https://doi.org/10.5614/j.eng.technol.sci.2015.47.2.4
- Fatriasari, W., Raniya, R., Anita, S.H., Hermiati, E. 2016. Conversion of oil palm empty fruit bunches (OPEFB) for bioethanol produce through microwave assisted organic acid pretreatment. Biorefinery Project Report (unpublished work).
- Fatriasari, W., Anita, S. H., Risanto, L. 2017. Microwave assisted acid pretreatment of oil palm empty fruit bunches (EFB) to enhance its fermentable sugar production. Waste and Biomass Valorization 8: 79-91.
- Fatriasari, W., Adi, D.T.N., Laksana, R.P.B., Fajriutami, T., Raniya, R., Ghozali, M., Hermiati, E. 2018. The effect of amphipilic lignin derivatives addition on enzymatic hydrolysis performance of kraft pulp from sorghum bagasse. IOP Conf. Series: Earth and Environmental Science 141(012005): 1-7.
- Fatriasari, W., Hamzah, F.N., Pratomo, B.I., Fajriutami, T., Ermawar, R.A., Falah, F., Laksana, R.P.B., Ghozali, M., Iswanto, A.H., Hermiati, E., Winarni, I. 2020. Optimizing the synthesis of lignin derivatives from acacia mangium to improve the enzymatic hydrolysis of kraft pulp sorghum bagasse. International Journal of Renewable Energy Development 9(2): 227-235. https://doi.org/10.14710/ijred.9.2.227-235
- Fengel, D., Wegener, G. 1989. Chemistry, Ultrastructure, Reaction, Walter de Gruyter, Berlin.
- Focher, B., Palma, M.T., Canetti, M., Torri, G., Cosentino, C., Gastaldi, G. 2001. Structural differences between non-wood plant celluloses: Evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Industrial Crops and Products 13(3): 193-208. https://doi.org/10.1016/S0926-6690(00)00077-7
- Fortunati, E., Luzi, F., Puglia, D., Torre, L. 2016. Chapter 1 - Extraction of Lignocellulosic Materials from Waste Products Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, pp. 1-38.
- Goh, C.S., Tan, H.T., Lee, K.T. 2012. Pretreatment of oil palm frond using hot compressed water: An evaluation of compositional changes and pulp digestibility using severity factors. Bioresource Technology 110: 662-669. https://doi.org/10.1016/j.biortech.2012.01.083
- Gómez, E.O., de Souza, R.T.G., de Moraes, R.G.J., de Almeida, E., Cortez, L.A.B. 2014. Sugarcane trash as feedstock for second generation processes. In: Cortez LAB (ed) Sugarcane bioethanol-R&D for Productivity and Sustainability, Editora Edgard Blucher, Sao Paulo, pp. 637-660.
- Goshadrou, A., Karimi, K., Taherzadeh, M.J. 2011. Bioethanol production from sweet sorghum bagasse by Mucor hiemalis. Industrial Crops and Products 34(1): 1219-1225. https://doi.org/10.1016/j.indcrop.2011.04.018
- Han, S-Y., Park, C-W., Kwon, G-J., Kim, J-H.,Kim, N-H., Lee, S-H. 2020. Effect of [EMIM]Ac recycling on Salix gracilistyla Miq. pretreatment for enzymatic saccharification. Journal of the Korean Wood Science and Technology 48(3): 405-413. https://doi.org/10.5658/WOOD.2020.48.3.405
- Helle, S.S., Duff, S.J.B, Cooper, D.G. 1993. Effect of surfactants on cellulose hydrolysis. Biotechnology and Bioengineering 42(5): 611-617. https://doi.org/10.1002/bit.260420509
- Hendriks, A.T.W.M., Zeeman, G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100(1): 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
- Hermiati, E., Oktaviani, M., Ermawar, R.A., Laksana, RPB, Kholida, LN, Thantowi, A., Mardiana, S.M., Watanabe, T. 2020. Optimization of xylose production from sugarcane trash by microwave- maleic acid hydrolysis. Reaktor 20(2): 81-88. https://doi.org/10.14710/reaktor.20.2.81-88
- Iswanto, A.H., Aritonang, W., Azhar, I, Supriyanto, Fatriasari, W. 2017. The physical, mechanical and durability properties of sorghum bagasse particleboard by layering surface treatment. Journal of the Indian Academy of Wood Science 14: 1-8. https://doi.org/10.1007/s13196-016-0181-7
- Jonsson, L.J., Alriksson, B., Nilvebrant, N.O. 2013. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology for Biofuels 6(16): 2-10. https://doi.org/10.1186/1754-6834-6-2
- Jutakanoke, R., Tolieng, V., Tanasupawat, S., Akaracharanya, A. 2017. Ethanol production from sugarcane leaves by Kluyveromyces marxianus S1.17, a genome-shuffling mediated transformant. BioResources. 12(1): 1636-1646.
- Kaar, W.E., Holtzapple, M.T. 1998. Benefits from tween during enzymic hydrolysis of corn stover. Biotechnology and Bioengineering 59(4): 419-427. https://doi.org/10.1002/(SICI)1097-0290(19980820)59:4<419::AID-BIT4>3.0.CO;2-J
- Kim, M.H., Lee, S.B., Ryu, D.D.Y., Reese, E.T. 1982. Surface deactivation of cellulase and its prevention. Enzyme and Microbial Technology 4(2): 99-103. https://doi.org/10.1016/0141-0229(82)90090-4
- Kumar, D.S., Marimuthu, P. 2012. Sweet sorghum stalks-an alternate agro based raw material for paper making. IPPTA Journal 24(3): 47-50.
- Lai, C., Tu, M., Shi, Z., Zheng, K., Olmos, L.G., Yu. 2014. Contrasting effects of hardwood and softwood organosolv lignins on enzymatic hydrolysis of lignocellulose. Bioresource Technology 163: 320-327. https://doi.org/10.1016/j.biortech.2014.04.065
- Lee, J-W., Rodrigues, R.C.L.B., Kim, H.J., Choi, I-G., Jeffries, T.W. 2010. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresource Technology 101(12): 4379-4385. https://doi.org/10.1016/j.biortech.2009.12.112
- Li, Y., Sun, Z., Ge, X., Zhang, J. 2016. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. Biotechnology for Biofuels 9(20): 1-9. https://doi.org/10.1186/s13068-015-0423-8
- Li, X., Li, M., Pu, Y., Ragauskas, A.J., Klett, A.S., Thies, M., Zheng, Y. 2018. Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy 123: 664-674. https://doi.org/10.1016/j.renene.2018.02.079
- Loow, Y.-L., Wu, T.Y., Md. Jahim, J., Mohammad, A.W., Teoh, W.H. 2016. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23(3): 1491-1520. https://doi.org/10.1007/s10570-016-0936-8
- Lukmandaru, G. 2016. Correlation between extractive content and colour properties in teak heartwood. Jurnal Penelitian Hasil Hutan 34(3): 207-216. https://doi.org/10.20886/jphh.2016.34.3.207-216
- Malmsten, M., Van Alstine, J.M. 1996. Adsorption of poly (ethylene glycol) amphiphiles to form coatings which inhibit protein adsorption. Journal of Colloid and Interface Science 177(2): 502-512. https://doi.org/10.1006/jcis.1996.0064
- Merklein, K., Fong, S.S., Deng, Y. 2016. Chapter 11. Biomass utilization in biotechnology for biofuel production and optimization. Biotechnology for Biofuel Production and Optimization, pp. 291-324.
- Miller, G.L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar Analitical Chemistry 31(3): 426-428. https://doi.org/10.1021/ac60147a030
- Min, C.H., Um, B.H. 2017. Effect of process parameters and kraft lignin additive on the mechanical properties of miscanthus pellets. Journal of the Korean Wood Science and Technology 45(6): 703-719. https://doi.org/10.5658/WOOD.2017.45.6.703
- Monrroy, M., Garcia, J.R., Mendonca, R.T., Baeza, J., Freer, J., Chil, J. 2012. Kraft pulping of Eucalyptus globulus as a pretreatment for bioethanol production by simultaneous saccharification and fermentation. Journal of the Chilean Chemical Society 57(2): 1113-1117. https://doi.org/10.4067/S0717-97072012000200012
- Moodley, P., Kana, E.B.G. 2015. Optimization of xylose and glucose production from sugarcane leaves (Saccharum officinarum) using hybrid pretreatment techniques and assessment for hydrogen generation at semi-pilot scale. International Journal of Hydrogen Energy 40(10): 3859-3867. https://doi.org/10.1016/j.ijhydene.2015.01.087
- Mussatto, S.I., Fernandes, M., George, J.M.R., José, J.M.O., José, A.T., Roberto, I.C. 2010. Production, characterization and application of activated carbon from brewer's spent grain lignin. Bioresource Technology 101(7): 2450-2457. https://doi.org/10.1016/j.biortech.2009.11.025
- Nababan, M.Y.S., Fatriasari, W., Wistara, N.J. 2020. Response surface methodology for enzymatic hydrolysis optimization of jabon alkaline pulp with Tween 80 surfactant addition. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00807-w
- Nakagame, S., Chandra, R.P., Kadla, J.F., Saddler, J.N. 2011. The isolation, characterization and effect of lignin isolated from steam pretreated douglas-fir on the enzymatic hydrolysis of cellulose. Bioresource Technology 102(6): 4507-4517. https://doi.org/10.1016/j.biortech.2010.12.082
- Oktaviani, M., Hermiati, E, Thontowi, A., Laksana, R.P.B., Kholida, L.N., Adriani, A, Yopi, W., Mangunwardoyo, W. 2019. Production of xylose, glucose, and other products from tropical lignocellulose biomass by using maleic acid pretreatment. IOP Conference Series: Earth Environmental. Science 251(012013): 1-9.
- Pareek, N., Gillgren, T., Jönsson, L.J. 2013. Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresource Technology 148: 70-77. https://doi.org/10.1016/j.biortech.2013.08.121
- Patil, J.V., Chari, A., Rao, SV., Mathur, R.M., Vimelesh, B., Lal, P.S. 2011. High Bio-Mass Sorghum (Sorghum bicolor): An alternate raw material for pulp and paper making in India. IPPTA Journal 23(2): 161-165.
- Punyamurthy, R., Sampath, K.D, Bennehalli, B., Srinivasa, C.V. 2013. Influence of esterification on the water absorption property of single abaca fiber. Chemical Science Transaction 2(2): 413-422. https://doi.org/10.7598/cst2013.371
- Qing, Q., Yang, B., Wyman, C.E. 2010. Impact of surfactants on pretreatment of corn stover. Bioresource Technology 101(15): 5941-5951. https://doi.org/10.1016/j.biortech.2010.03.003
- Rahikainen, J.L., Martin-Sampedro, R., Heikkinen, H., Rovio, S., Marjamaa, K., Tamminen, T., Rojas, O.J., Kruus, K. 2013. Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology 113: 270-278.
- Rowell, R.M., Pettersen, R., Han, J.S., Rowell, J.S., Tshabalala, M.A. 2005. Chapter 3: Cell Wall Chemistry in Handbook Wood Chemistry and Wood Composites, 1st ed., CRC Press, pp. 71-72.
- Sills, D.L., Gossett, J.M. 2011. Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass. Bioresource Technology 102(2): 1389-1398. https://doi.org/10.1016/j.biortech.2010.09.035
- Singh, D.P., Trivedi, R.K. 2013. Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel. International Journal of ChemTech Research. 5(2): 727-734.
- Sjostrom, E. 1998. Wood Chemistry. Fundamentals and Applications. Gadjah Mada University Press. Yogyakarta.
- Sjostrom, E. 1981. Wood Chemistry: Fundamentals and Applications, 2nd ed., Academic Press, San Diego, USA.
- Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2012. Determination of Structural Carbohydrates and Lignin in Biomass Technical Report NREL/TP-510-42618.
- Solihat, N.N., Fajriutami, T., Adi, D.T.N., Fatriasari, W., Hermiati, E. 2017. Reducing sugar production of sweet sorghum bagasse kraft pulp. AIP Conference Proceeding. 1803: 020012-1 - 020012-8.
- Uraki, Y., Ishikawa, N., Nishida, M., Sano, Y. 2001. Preparation of amphiphilic lignin derivative as a cellulase stabilizer. Journal of Wood Science 47(4): 301-307. https://doi.org/10.1007/BF00766717
- Wang, W., Zhuang, X., Yuan, Z., Yu, Q., Qi, W., Wang, Q., Tan, X. 2012. High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresource Technology 108: 252-257. https://doi.org/10.1016/j.biortech.2011.12.092
- Wang, W., Wang, C., Zahoor, Chen, X., Yu, Q., Wang, Z., Zhuang, X., Yuan, Z. 2020. Effect of a nonionic surfactant on enzymatic hydrolysis of lignocellulose based on lignocellulosic features and enzyme adsorption. ACS Omega 5(26): 15812-15820. https://doi.org/10.1021/acsomega.0c00526
- Winarni, I., Koda K., Waluyo, T.K., Pari, G., Uraki, Y. 2014. Enzymatic saccharification of soda pulp from sago starch waste using sago lignin-based amphipathic derivatives Journal of Wood Chemistry and Technology 34(3): 157-168. https://doi.org/10.1080/02773813.2013.846912
- Winarni, I., Oikawa, C., Yamada, T., Igarashi, K., Koda, K.,Uraki, Y. 2013. Improvement of enzymatic saccharification of unbleached cedar pulp with amphipathic lignin derivatives. Bioresources 8(2): 2195-2208.
- Wise, L.E., Murphy, M., Addieco, A.A. 1946. Chlorite holocellulose, Its fractionation and bearing on summative wood analysis and on studies on the hemicellulose. Paper Trade Journal 122(2): 35-43.
- Wright, R.T., Wiyono, E. 2013. USDA Foreign Agricultural Service: Indonesia oilseeds and products update. (http://gain.fas.usda.gov/Recent GAIN Pub lications/ Oilseeds and Products Update_Jakarta_Indonesia_5-4-20), Accessed 27 Apr. 2017.
- Xu, J., Cheng, J.J., Sharma-Shivappa, R.R., Burns, J.C. 2010. Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuels 24(3): 2113-2119. https://doi.org/10.1021/ef9014718
- Yanti, H., Syafii, W., Wistara, N.J., Febrianto, F., Kim, N.H. 2019. Effect of biological and liquid hot water pretreatments on ethanol yield from Mengkuang (Pandanus artocarpus Griff). Journal of the Korean Wood Science and Technology 47(2): 145-162. https://doi.org/10.5658/WOOD.2019.47.2.145
- Zong, Z., Ma, L., Yu, L., Zhang, D., Yang, Z., Chen, S. 2015. Characterization of the interactions between polyethylene glycol and cellulase during the hydrolysis of lignocellulose. BioEnergy Research 8(1): 270-278. https://doi.org/10.1007/s12155-014-9516-7