DOI QR코드

DOI QR Code

EMPAS: Electron Microscopy Screening for Endogenous Protein Architectures

  • Kim, Gijeong (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Jang, Seongmin (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Eunhye (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Song, Ji-Joon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2020.07.28
  • 심사 : 2020.08.14
  • 발행 : 2020.09.30

초록

In cells, proteins form macromolecular complexes to execute their own unique roles in biological processes. Conventional structural biology methods adopt a bottom-up approach starting from defined sets of proteins to investigate the structures and interactions of protein complexes. However, this approach does not reflect the diverse and complex landscape of endogenous molecular architectures. Here, we introduce a top-down approach called Electron Microscopy screening for endogenous Protein ArchitectureS (EMPAS) to investigate the diverse and complex landscape of endogenous macromolecular architectures in an unbiased manner. By applying EMPAS, we discovered a spiral architecture and identified it as AdhE. Furthermore, we performed screening to examine endogenous molecular architectures of human embryonic stem cells (hESCs), mouse brains, cyanobacteria and plant leaves, revealing their diverse repertoires of molecular architectures. This study suggests that EMPAS may serve as a tool to investigate the molecular architectures of endogenous macromolecular proteins.

키워드

참고문헌

  1. Ahn, S., Shenoy, S.K., Wei, H., and Lefkowitz, R.J. (2004). Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J. Biol. Chem. 279, 35518-35525. https://doi.org/10.1074/jbc.M405878200
  2. Burley, S.K. (2000). An overview of structural genomics. Nat. Struct. Biol. 7 (Suppl), 932-934. https://doi.org/10.1038/80697
  3. Burley, S.K., Berman, H.M., Kleywegt, G.J., Markley, J.L., Nakamura, H., and Velankar, S. (2017). Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol. Biol. 1607, 627-641. https://doi.org/10.1007/978-1-4939-7000-1_26
  4. Collins, B.C., Gillet, L.C., Rosenberger, G., Röst, H.L., Vichalkovski, A., Gstaiger, M., and Aebersold, R. (2013). Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 4-3-3 system. Nat. Methods 10, 1246-1253. https://doi.org/10.1038/nmeth.2703
  5. Grabowski, M., Niedzialkowska, E., Zimmerman, M.D., and Minor, W. (2016). The impact of structural genomics: the first quindecennial. J. Struct. Funct. Genomics 17, 1-16. https://doi.org/10.1007/s10969-016-9201-5
  6. Han, J.D.J., Bertin, N., Hao, T., Goldberg, D.S., Berriz, G.F., Zhang, L.V., Dupuy, D., Walhout, A.J., Cusick, M.E., Roth, F.P., et al. (2004). Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430, 88-93. https://doi.org/10.1038/nature02555
  7. Ho, C.M., Li, X., Lai, M., Terwilliger, T.C., Beck, J.R., Wohlschlegel, J., Goldberg, D.E., Fitzpatrick, A., and Zhou, Z.H. (2020). Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu. Nat. Methods 17, 79-85. https://doi.org/10.1038/s41592-019-0637-y
  8. Jeong, H., Mason, S., Barabási, A., and Oltvai, Z. (2001). Lethality and centrality in protein networks. Nature 411, 41. https://doi.org/10.1038/35075138
  9. Kastritis, P.L., O'Reilly, F.J., Bock, T., Li, Y., Rogon, M.Z., Buczak, K., Romanov, N., Betts, M.J., Bui, K.H., Hagen, W.J., et al. (2017). Capturing protein communities by structural proteomics in a thermophilic eukaryote. Mol. Syst. Biol. 13, 936. https://doi.org/10.15252/msb.20167412
  10. Kessler, D., Leibrecht, I., and Knappe, J. (1991). Pyruvate-formate-lyasedeactivase and acetyl-CoA reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE. FEBS Lett. 281, 59-63. https://doi.org/10.1016/0014-5793(91)80358-A
  11. Kim, G., Azmi, L., Jang, S., Jung, T., Hebert, H., Roe, A.J., Byron, O., and Song, J.J. (2019). Aldehyde-alcohol dehydrogenase forms a high-order spirosome architecture critical for its activity. Nat. Commun. 10, 4527. https://doi.org/10.1038/s41467-019-12427-8
  12. Kim, G., Yang, J., Jang, J., Choi, J.S., Roe, A.J., Byron, O., Seok, C., and Song, J.J. (2020). Aldehyde-alcohol dehydrogenase undergoes structural transition to form extended spirosomes for substrate channeling. Commun. Biol. 3, 298. https://doi.org/10.1038/s42003-020-1030-1
  13. Kühlbrandt, W. (2014). Biochemistry. The resolution revolution. Science 343, 1443-1444. https://doi.org/10.1126/science.1251652
  14. Nguyen, T.H.D., Galej, W.P., Bai, X.C., Oubridge, C., Newman, A.J., Scheres, S., and Nagai, K. (2016). Cryo-EM structure of the yeast U4/U6.U5 trisnRNP at 3.7 A resolution. Nature 530, 298-302. https://doi.org/10.1038/nature16940
  15. Olayioye, M.A., Noll, B., and Hausser, A. (2019). Spatiotemporal control of intracellular membrane trafficking by Rho GTPases. Cells 8, 1478. https://doi.org/10.3390/cells8121478
  16. Pellegrini, M., Haynor, D., and Johnson, J.M. (2004). Protein interaction networks. Expert Rev. Proteomics 1, 239-249. https://doi.org/10.1586/14789450.1.2.239
  17. Schaffer, M., Pfeffer, S., Mahamid, J., Kleindiek, S., Laugks, T., Albert, S., Engel, B.D., Rummel, A., Smith, A.J., Baumeister, W., et al. (2019). A cryoFIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat. Methods 16, 757-762. https://doi.org/10.1038/s41592-019-0497-5
  18. Scheres, S.H. (2016). Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol. 579, 125-157. https://doi.org/10.1016/bs.mie.2016.04.012
  19. Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., and Ludtke, S.J. (2007). EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38-46. https://doi.org/10.1016/j.jsb.2006.05.009
  20. Verbeke, E.J., Mallam, A.L., Drew, K., Marcotte, E.M., and Taylor, D.W. (2018). Classification of single particles from human cell extract reveals distinct structures. Cell Rep. 24, 259-268.e3. https://doi.org/10.1016/j.celrep.2018.06.022
  21. Yi, X., Verbeke, E.J., Chang, Y., Dickinson, D.J., and Taylor, D.W. (2019). Electron microscopy snapshots of single particles from single cells. J. Biol. Chem. 294, 1602-1608. https://doi.org/10.1074/jbc.RA118.006686