DOI QR코드

DOI QR Code

Acoustic emission technique to identify stress corrosion cracking damage

  • Soltangharaei, V. (Department of Civil and Environmental Engineering, University of South Carolina) ;
  • Hill, J.W. (Department of Civil and Environmental Engineering, University of South Carolina) ;
  • Ai, Li (Department of Civil and Environmental Engineering, University of South Carolina) ;
  • Anay, R. (Department of Civil and Environmental Engineering, University of South Carolina) ;
  • Greer, B. (Electrical Power Research Institute) ;
  • Bayat, Mahmoud (Department of Civil and Environmental Engineering, University of South Carolina) ;
  • Ziehl, P. (Department of Civil and Environmental Engineering, University of South Carolina)
  • Received : 2020.03.13
  • Accepted : 2020.04.14
  • Published : 2020.09.25

Abstract

In this paper, acoustic emission (AE) and pattern recognition are utilized to identify the AE signal signatures caused by propagation of stress corrosion cracking (SCC) in a 304 stainless steel plate. The surface of the plate is under almost uniform tensile stress at a notch. A corrosive environment is provided by exposing the notch to a solution of 1% Potassium Tetrathionate by weight. The Global b-value indicated an occurrence of the first visible crack and damage stages during the SCC. Furthermore, a method based on linear regression has been developed for damage identification using AE data.

Keywords

Acknowledgement

This material is based upon work supported by Electric Power Research Institute (EPRI) under the project number 1-108781.

References

  1. Ahmadi, H.R. and Anvari, D. (2018), "Health monitoring of pedestrian truss bridges using cone-shaped kernel distribution", Smart Struct. Syst., 22(6), 699-670. https://doi.org/10.12989/sss.2018.22.6.699.
  2. Ahmadi, H.R., Daneshjoo, F. and Khaji, N. (2015), "New damage indices and algorithm based on square time-frequency distribution for damage detection in concrete piers of railroad bridges", Struct. Control Health Monitor., 22(1), 91-106. https://doi.org/10.1002/stc.1662.
  3. Akaike, H. (1998), Information Theory and an Extension of the Maximum Likelihood Principle, Springer, Germany. https://doi.org/10.1007/978-1-4612-1694-0_15.
  4. Alvarez, M., Lapitz, P. and Ruzzante, J. (2008), "AE response of type 304 stainless steel during stress corrosion crack propagation", Corrosion Sci., 50(12), 3382-3388. https://doi.org/10.1016/j.corsci.2008.08.028.
  5. Bayat, M., Ahmadi, H. R., Kia, M. and Cao, M. (2019), "Probabilistic seismic demand of isolated straight concrete girder highway bridges using fragility functions", Adv. Concrete Construct., 7(3), 183-189. https://doi.org/10.12989/acc.2019.7.3.183.
  6. Bayat, M., Ahmadi, H.R. and Mahdavi, N. (2019), "Application of power spectral density function for damage diagnosis of bridge piers" Struct. Eng. Mech., 71(1), 57-63. https://doi.org/10.12989/sem.2019.71.1.057
  7. Calabrese, L., Campanella, G. and Proverbio, E. (2010), "Use of cluster analysis of acoustic emission signals evaluating damage severity in concrete structures ", J. Acoustic Emission, 28.
  8. Carpinteri, A., Xu, J., Lacidogna, G. and Manuello, A. (2012), "Reliable onset time determination and source location of acoustic emissions in concrete structures", Cement Concrete Compos., 34(4), 529-537, https://doi.org/10.1016/j.cemconcomp.2011.11.013.
  9. Dastjerdi, P.B. and Ahmadi, M. (2018), "Characterizing the damage mechanisms in mode II delamination in glass/epoxy composite using acoustic emission", Struct. Eng. Mech., 67(5), 545-553. https://doi.org/10.12989/sem.2018.67.5.545
  10. Dennis Jr, J.E. and Welsch, R.E. (1978), "Techniques for nonlinear least squares and robust regression", Communications in Statistics-Simulation Computation, 7(4), 345-359. https://doi.org/10.1080/03610917808812083.
  11. Du, G., Li, J., Wang, W., Jiang, C. and Song, S. (2011), "Detection and characterization of stress-corrosion cracking on 304 stainless steel by electrochemical noise and acoustic emission techniques", Corrosion Sci., 53(9), 2918-2926, https://doi.org/10.1016/j.corsci.2011.05.030.
  12. Forde, M.C., Colombo, S., Main, I.G., Ohtsu, M. and Shigeishi, M. (2016), "Predicting the ultimate load capacity of concrete bridge beams from the 'Relaxation Ratio', analysis of AE signals", Progress in Acoustic Emission. 18, 359-364.
  13. Fregonese, M., Idrissi, H., Mazille, H., Renaud, L. and Cetre, Y. (2001), "Initiation and propagation steps in pitting corrosion of austenitic stainless steels: Monitoring by acoustic emission", Corrosion Sci., 43(4), 627-641, https://doi.org/10.1016/S0010-938X(00)00099-8.
  14. Ge, M. (2003), "Analysis of source location algorithms: Part 2. Iterative methods", J. Acoustic Emission. 21(1), 29-51.
  15. Gholizadeh, S., Leman, Z. and Baharudin, B.T.H.T. (2015), "A review of the application of acoustic emission technique in engineering", Struct. Eng. Mech., 54(6), 1075-1095. https://doi.org/10.12989/sem.2015.54.6.1075
  16. Hakan, G. (2008), "Application of continuous wavelet transform to detect damage in thin-walled beams coupled in bending and torsion", Struct. Eng. Mech., 29(3), 351-354. https://doi.org/10.12989/sem.2008.29.3.351.
  17. Hill, J.W. (2018), Acoustic Emission Detection in 304h Stainless Steel Due to Intergranular Stress Corrosion Cracking, University of South Carolina.
  18. Holford, K.M., Davies, A., Pullin, R. and Carter, D. (2001), "Damage location in steel bridges by acoustic emission", J. Intelligent Mater. Syst. Struct., 12(8), 567-576, 10.1177/10453890122145311.
  19. Hsu, N. (1981), "Characterization and calibration of acoustic emission sensors", Material Evaluation, 39, 60-68.
  20. Hwang, W., Bae, S., Kim, J., Kang, S., Kwag, N. and Lee, B. (2015), "Acoustic emission characteristics of stress corrosion cracks in a type 304 stainless steel tube", Nuclear Eng., Technol., 47(4), 454-460. https://doi.org/10.1016/j.net.2015.04.001.
  21. Jirarungsatian, C. and Prateepasen, A. (2010), "Pitting and uniform corrosion source recognition using acoustic emission parameters", Corrosion Sci., 52(1), 187-197, https://doi.org/10.1016/j.corsci.2009.09.001.
  22. Kainuma, S., Yamamoto, Y., Ahn, J.H. and Jeong, Y.S. (2018), "Evaluation method for time-dependent corrosion depth of uncoated weathering steel using thickness of corrosion product layer", Struct. Eng. Mech., 65(2), 191-201. https://doi.org/10.12989/sem.2018.65.2.191
  23. Khorshidi, N., Ansari, M. and Bayat, M. (2014), "An investigation of water magnetization and its influence on some concrete specificities like fluidity and compressive strength", Comput. Concrete, 13(5), 649-657.https://doi.org/10.12989/cac.2014.13.5.649.
  24. Kim, Y.P., Fregonese, M., Mazille, H., Feron, D. and Santarini, G. (2003), "Ability of acoustic emission technique for detection and monitoring of crevice corrosion on 304L austenitic stainless steel", Ndt E., 36(8), 553-562, https://doi.org/10.1016/S0963-8695(03)00065-3.
  25. Kovac, J., Legat, A., Zajec, B., Kosec, T. and Govekar, E. (2015), "Detection and characterization of stainless steel SCC by the analysis of crack related acoustic emission", Ultrasonics, 62, 312-322, 10.1016/j.ultras.2015.06.005.
  26. Lee, C., Scholey, J., Worthington, S., Wilcox, P., Wisnom, M., Friswell, M. and Drinkwater, B. (2008), "Acoustic emission from pitting corrosion in stressed stainless steel plate", Corrosion Eng. Sci. Technol., 43(1), 54-63, https://doi.org/10.1179/174327808X286176.
  27. Maeda, N. (1985), "A method for reading and checking phase times in autoprocessing system of seismic wave data", J. Seismological Soc., 38, 365-379, https://doi.org/10.4294/zisin1948.38.3_365.
  28. Mahdavi, N., Ahmadi, H. R. and Bayat, M. (2019), "Efficient parameters to predict the nonlinear behavior of FRP retrofitted RC columns", Struct. Eng. Mech., 70(6), 703-710. https://doi.org/10.12989/sem.2019.70.6.703.
  29. Mazille, H., Rothea, R. and Tronel, C. (1995), "An acoustic emission technique for monitoring pitting corrosion of austenitic stainless steels", Corrosion Sci., 37(9), 1365-1375, https://doi.org/10.1016/0010-938X(95)00036-J.
  30. Mirfakhraei, S.F., Ahmadi, H.R. and Chan, R. (2020), "Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical)", Smart Struct. Syst., 25(2), 229. https://doi.org/10.12989/sss.2020.25.2.229.
  31. Mistras Group (2014), Express-8 AE System User Manual, Princeton Junction, NJ, USA.
  32. Mistras Group (2011a), WDI-AST Sensor Wideband Integral Preamplifier Sensor, P. A. Corporation, Princeton Junction, NJ, USA.
  33. Mistras Group (2011b), R6i-AT Integral Preamplifier Resonant Sensor, P. A. Corporation, Princeton Junction, NJ, USA.
  34. Morizet, N., Godin, N., Tang, J., Maillet, E., Fregonese, M. and Normand, B. (2016), "Classification of acoustic emission signals using wavelets and Random Forests: Application to localized corrosion", Mech. Syst. Signal Processing, 70, 1026-1037. https://doi.org/10.1016/j.ymssp.2015.09.025.
  35. Murtagh, F. and Legendre, P. (2014), "Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion?", J. Classification, 31(3), 274-295, https://doi.org/10.1007/s00357-014-9161-z.
  36. Rao, M. and Lakshmi, K.P. (2005), "Analysis of b-value and improved b-value of acoustic emissions accompanying rock fracture", Current Sci., 1577-1582.
  37. Roberts, T. and Talebzadeh, M. (2003), "Fatigue life prediction based on crack propagation and acoustic emission count rates", J. Construct. Steel Res., 59(6), 679-694, https://doi.org/10.1016/S0143-974X(02)00065-2.
  38. Shaikh, H., Amirthalingam, R., Anita, T., Sivaibharasi, N., Jaykumar, T., Manohar, P. and Khatak, H. (2007), "Evaluation of stress corrosion cracking phenomenon in an AISI type 316LN stainless steel using acoustic emission technique", Corrosion Sci., 49(2), 740-765, https://doi.org/10.1016/j.corsci.2006.06.007.
  39. Soltangharaei, V., Anay, R., Assi, L., Ziehl, P. and Matta, F. (2018), "Damage identification in cement paste amended with carbon nanotubes", AIP Conference Proceedings https://doi.org/10.1063/1.5031529.
  40. Soltangharaei, V., Anay, R., Hayes, N., Assi, L., Le Pape, Y., Ma, Z. and Ziehl, P. (2018), "Damage mechanism evaluation of large-scale concrete structures affected by alkali-silica reaction using acoustic emission", Appl. Sci., 8(11), 2148, https://doi.org/10.3390/app8112148.
  41. Suzuki, H., Kinjo, T., Hayashi, Y., Takemoto, M., Ono, K. and Hayashi, Y. (1996), "Wavelet transform of acoustic emission signals", J. Acoustic Emission, 14, 69-84.
  42. Tan, P.-N., Steinbach, M. and Kumar, V. (2018), Data Mining Cluster Analysis: Basic Concepts and Algorithms, Pearson Addison-Wesley, India.
  43. Wu, K., Lee, S., Lee, W.S., Hong, D.P. and Byeon, J.W. (2015), "Corrosion damage monitoring of stainless steel by acoustic emission", New Developments Mech. Mech. Eng., Vienna, Austria.
  44. Xu, J., Han, E.H. and Wu, X. (2012), "Acoustic emission response of 304 stainless steel during constant load test in high temperature aqueous environment", Corrosion Sci., 63, 91-99, https://doi.org/10.1016/j.corsci.2012.05.021.
  45. Xu, J., Wu, X. and Han, E.H. (2011), "Acoustic emission during pitting corrosion of 304 stainless steel", Corrosion Sci., 53(4), 1537-1546, https://doi.org/10.1016/j.corsci.2011.01.030.
  46. Xu, J., Wu, X. and Han, E.H. (2013), "Acoustic emission response of sensitized 304 stainless steel during intergranular corrosion and stress corrosion cracking", Corrosion Sci., 73, 262-273, https://doi.org/10.1016/j.corsci.2013.04.014.
  47. Yu, J., Ziehl, P., Zarate, B. and Caicedo, J. (2011), "Prediction of fatigue crack growth in steel bridge components using acoustic emission", J. Construct. Steel Res., 67(8), 1254-1260, https://doi.org/10.1016/j.jcsr.2011.03.005.