DOI QR코드

DOI QR Code

Fire resistance and residual strength of reactive powder concrete Using metakaolin

  • Jang, Hongseok (Department of Architectural Engineering, Research Center of Industrial Technology, Jeonbuk National University) ;
  • Yi, Jebang (Department of Architectural Engineering, Research Center of Industrial Technology, Jeonbuk National University) ;
  • So, Seungyoung (Department of Architectural Engineering, Research Center of Industrial Technology, Jeonbuk National University)
  • Received : 2020.05.19
  • Accepted : 2020.08.23
  • Published : 2020.09.25

Abstract

This study investigates the fire resistance characteristics of reactive powder concrete according to changes in the cement content per unit area, mixing ratio of metakaolin (MK), and content of polypropylene fiber. A fire test was conducted, and the resulting residual strength characteristics were investigated through flexural and compressive strength measurements, as well as condition rating classification based on visual evaluation. MK effectively reduced the initial high content of calcium hydroxide, thereby reducing the water vapor pressure generated during pyrolysis and slowing spalling. Furthermore, the pore structure and loose tissue were effective for relieving the water vapor pressure in the event of a fire.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012R1A1A2008719)

References

  1. Alireza, J., Mohammad, A.M. and Mohammad, B. (2017), "Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete", Adv. Concr. Constr., 5(3), 241-255. https://doi.org/10.12989/acc.2017.5.3.241.
  2. Ambroise, J., Maximilien, S. and Pera, J. (1994), "Properties of metakaoling blended cements", Adv. Cem. Based Mater., 1(4), 161-168. https://doi.org/10.1016/1065-7355(94)90007-8.
  3. Asadi, I., Shafigh, P., Bin Abu Hassan, Z.F. and Mahyuddin, N.B. (2018), "Thermal conductivity of concrete - a review", J. Build. Eng. 20, 81-93. https://doi.org/10.1016/j.jobe.2018.07.002.
  4. Atkinson, T. (2004), "Polypropylene fibers control explosive spalling in high-performance concrete", Concrete., 38(10), 69-70.
  5. Bakis, A., Isik, E., El, A.A. and Ulker, M. (2017), "A study on the mixture ratio of pumice powder concrete on the concrete pavement and the construction of building", IOSR-JMCE., 14(3), 83-90. https://doi.org/10.9790/1684-1403068390.
  6. Banerji, S., Kodur, V. and Solhmirzaei, R. (2020), "Experimental behavior of ultra high performance fiber reinforced concrete beams under fire conditions", Eng. Struct., 208(1) 110316. https://doi.org/10.1016/j.engstruct.2020.110316.
  7. Bastos, G., Patino-Barbeito, F., Patino-Cambeiro, F. and Armesto, J. (2016), "Admixtures in cement-matrix composites for mechanical reinforcement, sustainability, and smart features", Materials (Basel)., 4(12), 972. https://doi.org/10.3390/ma9120972.
  8. Bilodeau, A., Kodur, V.K.R. and Hoff, G.C. (2004), "Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire", Cem. Concr. Res., 26, 163-174. https://doi.org/10.1016/S0958-9465(03)00085-4.
  9. Bingol, A.F. and Gul, R. (2009), "Effect of elevated temperatures and cooling regimes on normal strength concrete", Fire Mater., 33(2), 79-88. https://doi.org/10.1002/fam.987.
  10. Bingol, A.F. and Gul, R. (2009), "Residual bond strength between steel bars and concrete after elevated temperatures", Fire Saf. J., 44(6), 854-859. https://doi.org/10.1016/j.firesaf.2009.04.001.
  11. Curcio, F., Deangelis, B.A. and Pagliolico, S. (1998) "Metakaolin as a pozzolanic microfiller for high-performance mortars", Cem. Concr. Res., 28(6), 803-809. https://doi.org/10.1016/S0008-8846(98)00045-3.
  12. Dashti Rahmatabadi, M.A. (2015), "Mechanical properties of reactive powder concrete under pre-setting pressure and different curing regimes", Int. J. Civ. Struct. Eng. Res., 4(4), 354-358. https://doi.org/10.18178/ijscer.4.4.354-358.
  13. El-Diadamony, H., Amer, A.A., Sokkary, T.M. and El-Hoseny, S. (2015), "Hydration and characteristics of metakaolin pozzolanic cement pastes", HBRC J., 14(2), 150-158. https://doi.org/10.1016/j.hbrcj.2015.05.005.
  14. El-Hawary, M.M. and Hamoush, S.A. (1996), "Bond shear modulus of reinforced concrete at high temperatures", Eng. Fract. Mech., 55(6), 991-999. https://doi.org/10.1016/S0013-7944(96)00049-5.
  15. EI-Jazairi, B. and Illston, J.M. (1980), "The hydration of cement paste using the semi-isothermal method of derivative thermogravimetry", Cem. Concr. Res., 10(3), 361-366. https://doi.org/10.1016/0008-8846(80)90111-8.
  16. Erdogdu, S., Kandila, U. and Nayirb, S. (2019), "Effects of cement dosage and steel fiber ratio on the mechanical properties of reactive powder concrete", Adv. Concr. Constr., 8(2), 139-144. https://doi.org/10.12989/acc.2019.8.2.139.
  17. Felicetti, R., Gambarova, P.G. and Meda, A. (2009), "Residual behavior of steel rebars and R/C sections after a fire", Constr. Build. Mater., 23(12), 3546-3555. https://doi.org/10.1016/j.conbuildmat.2009.06.050.
  18. Fire insurers laboratories of korea, FILK standard (FS019-1990), Fire resistance test for building construction and materials, 1990.
  19. Gamal, I.K., Elsayed, K.M., Makhlouf, M.H. and Alaa, M. (2019), "Properties of reactive powder concrete using local materials and various curing conditions", EJERS., 4(6), 74-83. https://doi.org/10.24018/ejers.2019.4.6.1370.
  20. Georgali, B. and Tsakiridis, P.E. (2005), "Microstructure of fire-damaged concrete. A case study", Cem. Concr. Compos., 27, 255-259. https://doi.org/10.1016/j.cemconcomp.2004.02.022.
  21. Haddad, R.H. and Shannis, L.G. (2004), "Post-fire behavior of bond between high strength pozzolanic concrete and reinforcing steel", Constr. Build. Mater., 18(6), 425-435. https://doi.org/10.1016/j.conbuildmat.2004.03.006.
  22. Hiremath, P.N. and Yaragal, S.C. (2018), "Performance evaluation of reactive powder concrete with polypropylene fibers at elevated temperatures", Constr. Build. Mater., 169, 499-512. https://doi.org/10.1016/j.conbuildmat.2018.03.020.
  23. Janotk, I., Puertas, F., Palacios, M., Kuliffayova and Varga, C. (2010), "Metakaolin sand-blended-cement pastes: Rheology, hydration process and mechanical properties", Constr. Build. Mater., 24(5), 791-802. https://doi.org/10.1016/j.conbuildmat.2009.10.028.
  24. Joshaghani, A., Moeini, M.A. and Balapour, M. (2017), "Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete", Adv. Concrete Constr., 5(3), 241-255. http://dx.doi.org/10.12989/acc.2017.5.3.241.
  25. Kalifa, P., Chene, G. and Galle, C. (2001), "High temperature behavior of HPC with polypropylene fibres from spalling to microstructure", Cem. Concr. Res., 31(10), 1487-1499. https://doi.org/10.1016/S0008-8846(01)00596-8.
  26. Korea infrastructure safety corporation (KISC) (2010), "Test method of thermogravimetry and differential thermal analysis", Korea.
  27. Korea standard association, KS F 2257-1: Method of fire resistance test for elements building construction - General requirements, 2005.
  28. Kushartomo, W., Bali, I. and Sulaiman, B. (2015), "Mechanical behavior of reactive powder concrete with glass powder substitute", Procedia Eng., 125, 617-622. https://doi.org/10.1016/j.proeng.2015.11.082.
  29. Larbi, J.A., Fraay, A.L.A. and Bijen, J.M. (1990), "The chemistry of the pore fluid of silica fume-blended cement systems", Cem. Concr. Res., 20(4), 506-516. https://doi.org/10.1016/0008-8846(90)90095-F.
  30. Lagerblad, B. (2001), "Leaching performance of concrete based on studies of samples from old concrete constructions", Technical Report TR-01-27, Swedish Cement and Concrete Research Institute.
  31. Lee, S. (2008), "Characterization of durability and fire-resistance of metakaolin mixed high strength concrete and its field application", Hanyang National University Master's Thesis.
  32. Lee, Y. (2009), "Fabrication of meta kaoline and its application", Gyeongsang National University Master's Thesis.
  33. Li, Y., Tan, K.H. and Yang, E.H. (2018), "Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature", Constr. Build. Mater., 169, 629-637. https://doi.org/10.1016/j.conbuildmat.2018.01.105.
  34. Lin, W., Lin, T.D. and Powers-Couche, L.J. (1996), "Microstructures of fire-damaged concrete", ACI Mater. J., 93(3), 199-205. https://doi.org/10.14359/9803.
  35. Liu, H.B., Li, K.L. and Ju, Y. (2010), "Explosive spalling of steel fiber reinforced reactive powder concrete subject to high temperature". Concrete, 8, 6-8. http://en.cnki.com.cn/Article_en/CJFDTotal-HLTF201008005.
  36. Metakaolin, Wikipedia (2019), https://en.wikipedia.org/wiki/Metakaolin.
  37. Mustafa, S., Metin, H.S. and Serhat C. (2017), "Mechanical properties of SFRHSC with metakaolin and ground pumice: Experimental and predictive study", Steel Compos. Struct., 23(5), 543-555. https://doi.org/10.12989/scs.2017.23.5.543.
  38. Nishida, A. and Yamazaki, N. (1995), "Study on the properties high strength concrete with short polypropylene fiber for spalling resistance", Proceedings of the International Conference on Concrete Under Severe Conditions, CONSEC'95, Sapporo, Japan.
  39. Parveen, P., Mehta, A. and Saloni, S. (2019), "Effect of ultra-fine slag on mechanical and permeability properties of Metakaolin-based sustainable geopolymer concrete", Adv. Concr. Constr., 7(4), 231-239. https://doi.org/10.12989/acc.2019.7.4.231.
  40. Peng, Y., Zhang, J., Liu, J., Ke, J. and Wang, F. (2015), "Properties and microstructure of reactive powder concrete having a high content of phosphorous slag powder and silica fume", Constr. Build. Mater., 101(1), 482-487. https://doi.org/10.1016/j.conbuildmat.2015.10.046.
  41. Poon, C.S., Azhar, S., Anson, M. and Wong, Y.L. (2001), "Comparison of the strength and durability performance of normal- and high-strength pozzolanic concretes at elevated temperatures", Cem. Concr. Res., 31(9), 1291-1300. https://doi.org/10.1016/S0008-8846(01)00580-4.
  42. Rix, H. (2009), Fire safety of concrete buildings, in, Cement Concrete & Aggregates, Australia, ISBN 978-1-877023-27-9.
  43. Sarika, S. and John, E. (2015), "A study on properties of reactive powder concrete", Int. J. Eng. Res. Tech., 4(11), 110-113. https://doi.org/10.17577/IJERTV4IS110170.
  44. Seitllari, A. and Maser, M.Z. (2019), "Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns", Comput. Concr. 24(3), 271-282. https://doi.org/10.12989/cac.2019.24.3.271.
  45. Serelis, E., Vaitkevicius, V. and Kersevicius, V. (2016), "Influence of silica fume on the workability and hydration process of ultra-high performance concrete", Chemine Technologija., 67(1), 58-65. http://dx.doi.org/10.5755/j01.ct.67.1.15825.
  46. Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z. and Fang, Z. (2015), "A review on ultra high performance concrete: Part I. Raw materials and mixture design", Constr. Build. Mater., 101, 741-751. https://doi.org/10.1016/j.conbuildmat.2015.10.088.
  47. So, H., Yi, J., Khulgadai, J. and So, S. (2014), "Properties of strength and pore structure of rpc exposed to high temperatures", ACI Mater. J., 11(3), 335-346. https://doi.org/10.14359/51686580.
  48. Sperinck, S., Raiteri, P., Marks, N. and Wright, K. (2011), "Dehydroxylation of kaolinite to metakaolin-a molecular dynamics study", J. Mater. Chem., 7, 2118-2125. https://doi.org/10.1039/c0jm01748e.
  49. Tafraoui, A., Escadeillas. G., Lebaili. S. and Vidal. T. (2009), "Metakaolin in the formulation of UHPC", Constr Build Mater., 23(2), 669-674. https://doi.org/10.1016/j.conbuildmat.2008.02.018.
  50. Tang, C.W. (2018), "Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading", Steel Compos. Struct., 27(2), 243-253. https://doi.org/10.12989/scs.2018.27.2.243.
  51. Tang, C. W. (2017), "Fire resistance of high strength fiber reinforced concrete filled box columns", Steel Compos. Struct., 23(5), 611-621. https://doi.org/10.12989/scs.2017.23.5.611.
  52. Yamamoto, T. (2006), "Pozzolanic reactivity of fly ash - API method and K-value", Fuel., 85(16), 2345-2351. https://doi.org/10.1016/j.fuel.2006.01.034.
  53. Yang, H., Qin, Y., Liao, Y. and Chen, W. (2016), "Shear behavior of recycled aggregate concrete after exposure to high temperatures", Constr. Build. Mater., 106, 374-381. https://doi.org/10.1016/j.conbuildmat.2015.12.103.
  54. Yang, Y., Feng, S., Xue, Y., Yu, Y., Wang, H. and Chen, Y. (2019), "Experimental study on shear behavior of fire-damaged reinforced concrete T-beams retrofitted with prestressed steel straps", Constr. Build. Mater., 209, 644-654. https://doi.org/10.1016/j.conbuildmat.2019.03.054.
  55. Wild, S., Khatib, J.M. and Jones, A. (1996), "Relative strength, pozzolanic activity and cement hydration in superplasticized metakaolin concrete", Cem. Concr. Res., 26(10), 1537-1544. https://doi.org/10.1016/0008-8846(96)00148-2.
  56. Zheng, W., Li H. and Wang Y. (2012). "Compressive Behaviour Hybrid Fiber-Reinforced Reactive Powder Concrete after High Temperature", Mater. Des., 41, 403-409. http://dx.doi.org/10.1016/j.matdes.2012.05.026.
  57. Zhang, H.Y., Qiu, G.H., Kodur, V., Yuan, Z.S. (2020). "Spalling behavior of metakaolin-fly ash based geopolymer concrete under elevated temperature exposure", Cem. Concr. Compos., 106, 10343. https://doi.org/10.1016/j.cemconcomp.2019.103483