유기소재를 통한 금속산화물반도체 패시베이션

글_호동일 박사과정·김충익교수 | 서강대학교 화공생명공학과

1. 서론

현재 IT 산업은 크게 확장되어 유연하고 착용 가능한 차세대 전자 장치의 개발로 고해상도, 프레임 속도가 높은 디스플레이에 대한 요구가 높아지고 있다 [1]. 최근의 추세에 따라 디스플레이 기술은 LCD에서 OLED까지 수년에 걸쳐 발전해 왔으며, 시장의 높은 기대치를 충족시키기 위해, 비정질 산화물 반도체(AOS)는 백플레인 박막 트랜지스터(TFT)를 위한 적절한 스위칭 및 구동 재료로서 많은 관심을 끌고있다. 특히, 금속 산화물 반도체는 높은 전자이동도, 낮은 오프 전류, 큰 온/오프 전류 비율로 인해 기존의 실리콘 기반 반도체 재료를 대체할 것으로 기대되고 있지만, 안정성 및 신뢰성 문제는 실제 응용 분야의 중요한 한계로 간주되었다 [2,3].

전압 바이어스 스트레스에 대한 산화물 반도체의 안정성은 박막 트랜지스터(TFT)의 켜 짐/꺼짐 상태가 전압 바이어스에 의해 결정되므로 피할 수 없기 때문에 중요하다 [4-6]. 산소또는 금속 이온 공공, 치환, 안티사이트 결함과같은 비정질 구조적 결함으로 인해 n형 AOS의밴드 갭에 형성된 전자 결함 상태가 불안정성의 원인으로 보고되었다 [7-9]. 따라서, 안정성향상을 위해서 채널 층의 결함 상태를 보상하고 주변 불순물을 차단하는 것이 필수적이다.

이러한 문제를 해결하는 비교적 간단한 방법 중 하나로 AOS 표면의 후면 채널에 추가 패시베이션 층을 올리는 방법이 있다. 이전에는 SiO_x, Al₂O₃, TiO_x와 같은 다양한 무기 화합물이 사용되었으나, 이들 재료의 대부분이 까다로운 제조 조건이 요구되었고, 추가적인 소자 성능 저하를 유발할 가능성으로 인해, 유기 패시

베이션 방법이 관심을 끌었다 [10-12]. 유기 물질은 일반적으로 저비용의 비파괴적이고 간단한 용액 공정으로 제조되므로 무기 물질에 사용되는 진공 기반 제조 방법의 단점을 피할 수있다. 본고에서는 이러한 유기 패시베이션에 대한 최근 연구동향을 살펴보고자 한다.

2. 자가 조립 단층을 통한 패시베이션

자가 조립 단층(self-assembled monolayers) 은 흡착에 의해 표면에 자발적으로 형성되는 유기 분자 어셈블리이다. 정렬된 도메인의 조 직적인 특성은 유기 전자소자를 위한 반도체/ 절연체 계면을 개선하기위한 표면 개질 도구로 서 널리 적용되었다. 대기 효과는 AOS의 PBS 불안정성의원인 중 하나로 알려져 있기 때문 에 백 채널에 추가 SAM 층을 올리는 것은 대 기 가스로부터 산화물 반도체 층을 보호하는 간단하고 효과적인 방법이 된다. O2 및 H2O와 같은 대기 분자의 흡착은 전기 성능에 영향을 미치는 백 채널에서의 화학 반응을 가속화 한 다. 예를 들어, 흡착된 O2 및 H2O 분자는 전자 수용체로 작용하고 산화물 반도체 막에서 자 유 전자를 포획하여 공핍층을 생성한다(O2 + e- → O_2 및 $2H_2O + O_2 + 4e$ → 4OH) [13]. H_2O 분자는 또한 H₂O의 양, 즉 H₂O → H₂O + + e-에 따라 전자 공여체 상태를 형성하여 축적층 을 형성할 수 있다 [14]. 따라서, 이러한 성능 저하와 관련하여, 백 채널에서의 SAM의 적용은 유기혜드 그룹의 강한 화학 흡착으로 우수한 계면 결합 및 화학적 안정성을 제공함으로 써 효과적인 패시베이션 층으로 작용하는 것이다 [15]. 공유 결합을 통해 백채널 표면에 밀접된 SAM은 약하게 결합된 물 분자를 효과적으로 제거하여 소자 성능의 히스테리시스를줄일 수 있다 [16]. 또한, 알킬 사슬의 소수성성질은 물 분자를 차단하여 흡착-탈착 효과를 감소시킨다. 특히, 침지 또는 스핀 코팅과 같은 증기 또는 용액 공정기반 방법을 통해 SAM을 백 채널에 쉽게 적용할 수 있다. 여기서 증기 기반 방법은 환경에 덜 민감하고 솔루션 기반 방법에 비해 재현성이 높다.

2018년에는 알킬 사슬 길이가 다른 SAM 에 대한 패시베이션 효과가 조사되었다. 상이 한 사슬 길이를 갖는 SAM의 패시베이션 효과 를 비교하기 위해, 3개의 상이한 알킬 사슬 길 이를 갖는 triethoxysilane계 SAM을 indium tin zinc oxide (ITZO) 위에 적용시켰다. 결과적으 로, 알킬 시슬이 가장 긴 SAM으로 처리된 TFT 는 PBS 조건 하에서 22.9 cm²V⁻¹S⁻¹의 전자 이 동도와 $0.4 \text{ V의 임계 전압 시프트 } (\Delta \text{ V}_{th})$ 를 보 이는 향상된 성능과 안정성을 나타냈다. 이러 한 결과는 강력한 응집성 상호 작용을 갖는 긴 알킬 사슬 SAM에 기인 할 수 있으며, ITZO 표 면에 균일하고 잘 정렬된 형태를 형성하게 된 다. 이 연구에서 보고된 소자 불안정성은 H2O 의 화학적 흡착과 ITZO의 히드록실화된 표면 에 생성된 수용성 수용체 트랩에 기인하게 되 는데, SAM 분자가 산화물 백 채널의 -OH 기와 반응하여 하이드록실화 된 표면을 비활성화하고 밀도가 높은 소수성 장벽을 만들어 주변에서 물 분자를 차단하게 된다 [17].

이와 비슷하게, zinc oxide (ZnO) 표면에 4-chlorobenzoic acid (PCBA) SAM처리를 하여소자 성능 및 안정성 향상의 효과를 입증하기도 하였다. 패시베이션 된 ZnO TFT는 전자 이동도가 크게 향상되었으며, 트랩 농도 및 접촉저항도 효과적으로 감소되었다. 결론적으로, 계면 패시베이션 층은 최적화 된 인터페이스를 제공 할 수 있고 소스/그레인 전극과 반도체 층사이의 접촉 전위 장벽을 감소시킬 수 있음을 알 수 있다. 또한, PCBA 패시베이션은 최대 15일 동안 상대 습도가 40%인 대기환경에노출 된 소자의 V_h 변성 및 I_{off} 저하를 최소화시킬 수 있는 것으로 나타났다 [18].

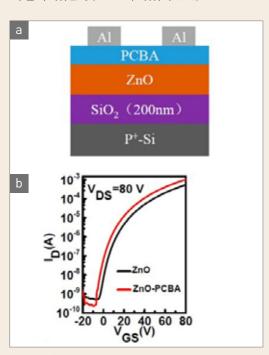
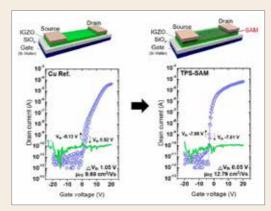



그림 1 ▶ (a) PCBA 처리된 ZnO 소자 구조와 (b) PCBA 처리 전후 의 ZnO 소자 성능 비교 [18].

최근 몇 년간, 디스플레이의 대면적, 고해상 도에 대한 산업적인 요구에 따라 RC 지연 문제 에 대한 돌파구가 집중적으로 연구되었다. 낮 은 저항률을 갖는 구리 전극을 사용함으로써 RC 지연이 개선될 수 있지만, 활성 층 내로 Cu 이온이 확산되는 문제는 실질적인 적용을 막 는 큰 걸림돌이었다. 이 문제를 해결하기 위해 최근 IGZO 반도체의 패시베이션을 위한 다양 한 작용기 및 알킬 시슬 길이를 갖는 계면 SAM 층이 보고되었다. AOS 백채널 위의 수 nm 두 께의 SAM 패시베이션 층은 Cu 확산을 방지할 뿐만 아니라 소자의 전기적 특성을 개선시킨 다. -SH, -CF₃, -NH₂ 및 -CH₃와 같은 다양한 작 용기를 가진 SAM에 따른 소자 전달곡선의 히 스테리시스 경향을 확인한 결과, -CH3의 중성 극성으로 인해 trimethoxy(propyl)silane (TPS) 처리된 IGZO TFT의 안정성이 크게 개선되여 우수한 전기적 특성을 나타났다. 또한, SAM 길 이가 짧을수록 Cu 확산 경로가 짧아짐에 따라 Cu 확산에 의한 영향이 크게 유도되는 반면, 작은 접촉 저항으로 높은 이동성을 나타나게

고림 2 ▶ 레퍼런스 및 TPS 처리된 IGZO TFT 사이의 전기적 성능 비교 [19].

되었다. 즉, SAM 알킬 사슬 길이에 따라 접촉 저항 및 Cu 확산 정도의 제어가 가능한 것을 알 수 있다 [19].

3. 고분자를 통한 패시베이션

고분자 또한 금속 산화물 TFT 용 패시베이션 소재로서 널리 사용되고있다. 고분자는 용액 공정이 가능하고 유연 기판에 적용할 수 있으 며, 특히 parylene기반의 중합체, poly(methyl methacrylate) (PMMA) 및 포토레지스트 (PR) 는 이전에 패시베이션 재료로서 연구되어 소 자 성능을 향상시키는 것으로 입증되었다.

예를 들어, ITZO (indium-tin-zinc-oxide)
TFT에 용액 공정으로 Olefin계 고분자 패시베이션 층을 적용시켜 유연하고 대기에 안정적인 OLED 디스플레이를 개발했다. Olefin계 고분자는 우수한 절연성 및 소수성 특성으로 전극 스퍼터링 및 습식 에칭으로 손상된 백 채널으로부터 발생된 TFT의 험프 효과 및 히스테리시스를 감소시켰다. 또한 해당 고분자는 용이하게 광 패턴 화 될 수 있기 때문에, 제조 공정을 단순화하고 OLED의 유연성을 향상시킬수 있다 [20].

Olefin계 고분자를 제외하고, parylene-C (poly(monochloro-p-xylylene)는 소수성 및 높은 광학적 투명성으로 인해 산화물 반도 체 패시베이션에 자주 사용되는 중합체이다. parylene-C로 패시베이션된 TFT가 진공

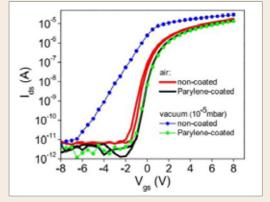


그림 3 ▶ 공기 및 진공에서 parylene 패시베이션 처리된 TFT와 처리되지 않은 레퍼런스의 전달 특성 [21].

및 대기 환경에서 진행된 PBS 테스트에서 균일 한 전기적 성능을 보여주었다는 사실로부터 parylene 고분자층이 대기물질의 채널 층으로의 확산을 차단했음을 알 수 있다. 고분자의 encapsulation 특성을 확인하기 위해 소자를 7개월 동안 보관후에 PBS 테스트를 실시하여 무시할만한 문턱전압 차이를 볼 수 있었으며, 산소 공공의 광 이온화에 의해 생성 된결함을 중화시킴으로써 NBIS (negative bias illumination stress) 안정성을 향상시킨 점 또한확인 할 수 있다 [21].

고분자는 전형적으로 높은 산소 및 물 투과 성을 나타내고 소자 제조 공정 동안 용매 노출 에 대해 변성할 수 있는 것으로 알려져 있다. 이러한 특성은 패시베이션 물질로서 폴리머의 적용을 방해하므로, 연구자들은 고분자 보다 효과적인 이중층 패시베이션 접근법을 개발했 다. 예를 들어, 최근 parylene-C/ALD-AlOx 이 중층 하이브리드 패시베이션 구조가 개발되기 도 했다 [22]. 유/무기 하이브리드 패시베이션 층을 사용하는 연구에 대한 세부 사항은 5장에 서 더 논의하려고 한다.

이와 유사하게, parylene-C 기반 패시베이션 층의 안정성을 향상시키기 위해, parylene-C와 diketopyrrolopyrrole (DPP) 고분자로 이루어 진 이중층 패시베이션이 제시 되었다. 해당 이 중층의 소수성 특성은 흡착된 주변 분자로부터의 전하 커플링 열화를 방지하고 120분 동안 물에 담근 후 TFT를 측정하는 가혹한 환경시험에서의 히스테리시스를 감소시킨다. 또한 광학 밴드 갭이 낮은 특성 때문에 대부분의 빛이 DPP 고분자에 흡수되는 우수한 NBIS 안정성을 보여준다 [23].

패시베이션 층으로서 사용되는 또다른 대표 적인 고분자는 리소그래피 목적으로 전형적으 로 사용되는 포토 레지스트이다. 포토 레지스 트는 생산 라인과의 상용성, 가교 후의 소수성 표면 및 탁월한 화학적 또는 온도 저항성과 같 은 유리한 특성을 갖는다. 예를 들어 탑 게이 트 구조에서 유기 절연체를 사용할 때 대기물 질의 흡착 및 투과성 반응으로부터 절연체에 서 이온 성 작용기의 생성으로 인한 험프 특성 및 V_h 이동과 같은 열악한 PBS 및 NBS 안정성 을 나타냈다. SU-8 패시베이션 층은 이러한 대 기의 영향을 최소화하기 위해 사용되었다. 결 과적으로 험프 특성들이 사라지고 PBS에서 큰 음의 V_h 이동이 작은 양의 이동으로 변하였고 NBS 테스트에서 V_{th}의 이동도 효과적으로 감 소하였다 [24].

4. 단분자 반도체를 통한 패시베이션

금속 산화물 TFT를 위한 유기 패시베이션 소재 중에서, 단분자 반도체는 구리 전극으로부터의 구리 이온 확산 억제 및 고에너지 조사에의해 생성 된 추가적인 결함 생성 억제와 같은다기능 패시베이션 효과를 나타내는 가장 최근에 연구 된 물질의 종류이다. 이러한 물질은전하 수송 도펀트로 작용할 수 있으며 소자의전기적 특성을 조정할 수 있다. 단분자 유기반도체는 다목적 분자 구조, 간단한 합성 및 유기 전자 응용 분야에 대한 쉬운 구조 변형 등의장점들 덕분에 유기 패시베이션 메커니즘 및제어에 대한 심층 연구가 가능하다.

구리 이온 확산은 높은 스위칭 속도로 집적 회로를 구현하는데 방해가 되는 RC 지연을 발 생시키는 중요한 문제다. 이를 해결하기 위 해 간단한 스핀 코팅 공정으로 n형 PCBM 반 도체를 다기능 유기 패시베이션층으로 적용 시켜 구리 이온 확산을 억제하고 소자 안정성 을 보장할 수 있다. 구리 이온은 채널 층으로 확산하여 수용체 또는 도너와 유사한 트랩 상 태를 생성하고 SS 증가 및 음의 V_h 이동과 같 은 소자 불안정성을 유발하는 것으로 알려져 있다. 구리 전극과 indium gallium zinc oxide (IGZO) 백채널 사이에 낮은 LUMO 레벨을 갖 는 PCBM 층을 삽입함으로써, 구리 이온 확 산 억제 및 전자 공여 패시베이션이 이루어졌 다. 이차 이온 질량 분석법(SIMS)을 통한 깊 이 분석 및 hard soft acid base (HSAB) 이론을

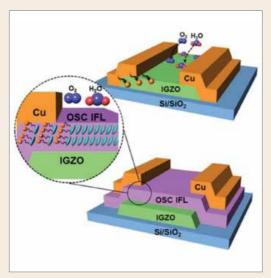


그림 4 ▶ PCBM 유기 패시베이션 처리된 TFT와 처리되지 않은 IGZO TFT의 모식도 [25].

통해, 연산으로 간주되는 구리 이온이 S, P 원자 또는 연질 염기로 간주되는 단분자 반도체의 π-전자와 강하게 결합할 수 있음이 밝혀졌다. 또한 PCBM과 인듐 사이의 강한 상호 작용으로 인해 산소 공공이 채워져 IGZO의 백채널에서의 물과 산소의 흡착이 억제되었다. 더 나아가, IGZO 전기적 특성의 추가 조정을 위해, 4-(2,3-Dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI)을 IGZO와 PCBM 계면에 선택적으로 도핑하여 Vth 값을 유지시키면서 TFT의 접촉 저항을 크게 감소시킬 수 있었다 [25].

AOS의 전기적 특성을 조정하기위한 후속 연구로서, 풀러렌 반도체의 벌크 전하 전송 도핑 연구도 진행되었다. 풀러렌 유도체 (C60-malonic acid)를 Indium zinc oxide (IZO) 전구체 용액과 블렌딩하였을때, 1%의 최적화된 도핑 농도로 제작된 TFT에서 캐리어 이동도가

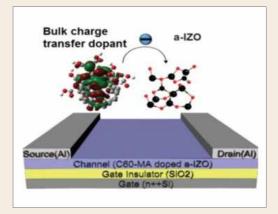


그림 5 ▶ 벌크 전하 전송 도핑 모식도 [26].

향상되었으며 PBS 조건하에서 V_{th}의 이동 또한 감소했다. 구조적 배열이 좋지 못한 AOS에 대 한 도핑 레벨 제어가 어렵다는 점과 관련하여 유기 반도체 기반 패시베이션에 대한 최근 연 구는 AOS의 전기적 특성을 조정하는 새로운 길을 제시한다고 할 수 있다 [26].

PCBM 패시베이션 층은 양성자 조사에 의한 금속 산화물 반도체에서의 추가적인 결함 발생을 억제하는 것으로도 알려져 있다. 패시베이션 되지 않은 IGZO TFT는 양성자 방사선량이 증가함에 따라 상당한 음의 V_{th}이동이 나타나거나 도체 상태로 전이되었다. 이러한 성능저하는 반도체 층에서 얕은 공여체 및 깊은트랩 상태로서 작용하게 되는 양성자 조사로부터 유도된 산소 공공의 형성으로부터 기원한다. IGZO 백채널에 추가 PCBM 층을 적용하면 산소공공 생성이 억제되고 방사선 저항성특성이 나타나게 되는데, 양성자 조사 후 V_{th}의 이동이 현저하게 줄어든 것을 확인할 수있다 [27].

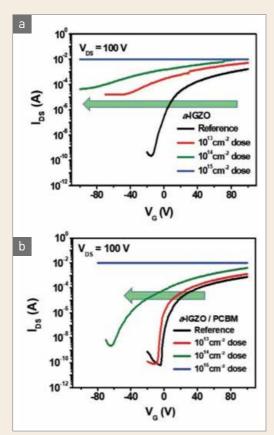


그림 6 ▶ 5 MeV 양성자 조사 전후의 (a) 패시베이션 되지 않은 IGZO TFT와 (b) PCBM 패시베이션된 IGZO TFT의 전달 곡선 [27].

5. 유-무기 하이브리드 층을 통한 패시베이션

추가 소자 성능 저하를 유발할 수 있는 고가의 진공 공정을 요구하는 무기물 패시베이션의 한계를 극복하기 위해 유기 패시베이션 방법이 개발되었다. 그러나 단일 유기 패시베이션 충만을 사용하는 것은 불완전 할 수 있고 무기 재료에 비해 상대적으로 약한 패시베이션 효과를 나타낸다. 따라서, 효과적인 금속 산화물 패시베이션을 위한 새로운 방법을 도입하기

위해 유기-무기 하이브리드 구조 또는 재료에 대한 연구가 수행되었다.

예를 들어, polysilsesquioxane (PSQ)에 기반 한 유기-무기 하이브리드 패시베이션 층의 도 입이 무기 및 유기 물질 모두를 이용하는 방법 으로 보고되었다. 반응성 이온 에칭 공정에서 문제를 나타내는 PSO 패시베이션에 대한 후속 연구로서, 포토 리소그래피를 통한 접촉 홀 형 성을 가능하게하는 감광성 PSQ (P-PSQ)가 개 발되었다. P-PSQ 패시베이션된 IGZO TFT는 험프 효과 제거와 함께 다양한 스트레스 조건 에 대한 향상된 전기적 특성과 안정성을 보였 다. 또한, 패시베이션 층의 화학 구조로 인해 습 도가 높은 환경하에서 탁월한 배리어 효과를 나타낸다. P-PSQ의 메틸 및 페닐 성분의 소수 성은 대기 물질의 물리적 흡착을 차단한다. 수 소, 불소와 같은 화학 원소는 소자 안정성과 전 기적 특성에 영향을 주기도 하였는데, 수소 원 지는 IGZO의 산소공공을 줄일 수 있고 불소 원 자는 이온성 반경이 산소 원자의 것과 유사하 기 때문에 산소공공을 보완하거나 약하게 결합 된 산소 원자를 대체할 수 있다. 더 나아가, 수 소 및 불소 원자에 의한 도핑 효과는 IGZO TFT 의 전자 이동도를 21% 향상시키고 전압 바이어 스에 대한 안정성을 향상시킨다 [28].

앞서 3장에서 언급한 바와 같이, 단일 재료 패시베이션 층은 무기 재료의 추가로 하이브리드 층을 제조함으로써 강화될 수 있다. 예를들어, 테플론/SiOx 및 parylene/AlOx 다층 패시베이션은 고분자 단일층의 결함 및 스퍼터링 공정에 의해 야기되는 손상을 감소시킴으

로써 소자 안정성을 향상시킨다. 그러나, 이러한 패시베이션 방법은 스퍼터링에 의해 AlOx로만 패시베이션 된 TFT와 비교하여 떨어지는 바이어스 안정성을 보여준다. 따라서 손상을 최소화하면서 고밀도 박막을 형성하기 위해스퍼터링 대신 Atomic layer deposition (ALD)을 사용하여 parylene/ALD-AlOx 하이브리드 패시베이션층이 적용되었다. 백 채널에서의산소 흡착 및 AlOx의 고유 전기 쌍극자를 방지하는 하이브리드 패시베이션 층의 도움으로,하이브리드 패시베이션 된 TFT는 험프 현상없이 작은 히스테리시스를 나타냈다 [22].

안정적인 고성능 첨단 전자 장치 개발을 위한 새로운 연구가 이루어질 것으로 기대한다. ♣

6. 맺음말

소자 동작 안정성의 향상은 금속 산화물 박 막 트랜지스터를 산업 수준으로 실제 적용하는 데 중요하다. 금속 산화물 반도체의 백채널 에 유기 패시베이션 층을 사용함으로써 소자 안정성을 향상시키고 전기적 특성을 조정하는 것이 달성되었다. 지금까지의 연구는 소자 안 정성의 개선을 위한 산화물 반도체상 패시베이 션 층으로서 유기 물질의 성공적인 적용을 보 고하지만, 패시베이션 효과를 제어하기위한 세 부적인 메커니즘 또는 접근법은 밝혀지지 않 았다. 이에 다양한 응용 분야에서 고성능 장치를 구현하기 위해 이상적인 유기 패시베이션 모델이 필요하다. 앞으로 효율적인 패시베이 션을 위한 유기 재료의 적용이 더욱 확대되고

참/고/문/헌

- [1] S. M. Lee, J. H. Kwon, S. Kwon, and K. C. Choi, IEEE T. Electron. Dev., 64, 1922 (2017).
- [2] Y. Uraoka, J. P. Bermundo, M. N. Fujii, M. Uenuma, and Y. Ishikawa, *Jpn. J. Appl. Phys.*, 58, 090502 (2019).
- [3] L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella, F. Bottacchi, T. D. Anthopoulos, and G. Tröster, *Appl. Phys. Rev.*, 3, 021303 (2016).
- [4] S. H. Cho, M. K. Ryu, H. O. Kim, O. S. Kwon, E. S. Park, Y. S. Roh, C. S. Hwang, and S. H. Ko Park, *Phys. Status Solidi A*, 211, 2126 (2016).
- [5] M. H. Kim, Y. S. Ko, H. S. Choi, S. M. Ryu, S. H. Jeon, J. H. Jung, and D. K. Choi, *Phys. Status Solidi A*, 213, 1873 (2016).
- [6] Y. J. Cho, W. S. Kim, Y. H. Lee, J. Park, and G. Kim, O. Kim, Solid-State Electron., 144, 95 (2018).
- [7] P. T. Liu, C. H. Chang, and C. J. Chang, Appl. Phys. Lett., 108, 261603 (2016).
- [8] Y. Jeong, C. Bae, D. Kim, K. Song, K. Woo, H. Shin, G. Cao, and J. Moon, ACS Appl. Mater. Interfaces, 2, 611 (2010).
- [9] E. Chong, K. C. Jo, and S. Y. Lee, Appl. Phys. Lett., 2010, 96, 152102 (2010).
- [10] Y. J. Cho, W. S. Kim, Y. H. Lee, J. Park, G. Kim, and O. Kim, *Solid-State Electron*, 144, 95 (2018).
- [11] J. Wu, Y. Chen, D. Zhou, Z. Hu, H. Xie, and C. Dong, *Mater. Sci. Semicond. Process*, 2015, 29, 277.
- [12] D. S. Han, J. H. Park, M. S. Kang, S. R. Shin, Y. J. Jung, D. K. Choi, J. W. Park, and J. Electron. Mater., 44, 651 (2015).

- [13] K. W. Liu, B. Liu, S. J. Wang, Z. P. Wei, T. Wu, C. X. Cong, Z. X. Shen, X. W. Sun, and H. D. Sun, *Journal of Applied Physics*, 106, 083110 (2009).
- [14] D. Kim, S. Yoon, Y. Jeong, Y. Kim, Y. Kim, B. Kim, and M. Hong, Applied Physics Express, 5, 021101 (2012).
- [15] P. Xiao, L. Lan, T. Dong, Z. Lin, W. Shi, R. Yao, X. Zhu, and J. Peng, Appl. Phys. Lett., 104, 051607 (2014).
- [16] W. Xu, D. Liu, H. Wang, L. Ye, Q. Miao, and J. B. Xu, Appl. Phys. Lett., 104, 173504 (2014).
- [17] W. Zhong, G. Li, L. Lan, B. Li, and R. Chen, *IEEE Electron Device Lett.*, 39, 1680 (2018).
- [18] L. Wan, F. He, Y. Qin, Z. Lin, J. Su, J. Chang, and Y. Hao, *Materials*, 11, 1761 (2018).
- [19] S. E. Lee, J. Park, J. Lee, E. Lee, C. Im, H. Na, N. K. Cho, K. H. Lim, and Y. S. Kim, ACS Appl. Electron. Mater., 1, 430 (2019).
- [20] M. Nakata, G. Motomura, Y. Nakajima, T. Takei, H. Tsuji, H. Fukagawa, T. Shimizu, T. Tsuzuki, Y. Fujisaki, and T. Yamamoto, *Journal of the SID*, 2016, 50, 3 (2016).
- [21] A. Kiazadeh, H. L. Gomes, P. Barquinha, J. Martins, A. Rovisco, J. V. Pinto, R. Martins, and E. Fortunato, Appl. Phys. Lett., 109, 051606 (2016).
- [22] S. Zhan, S. Han, S.Y. Bang, B. Li, Y. T. Chun, B. Hou, and J.M. Kim, *Phys. Status Solidi A.*, 2019.
- [23] Y. J. Tak, S. T. Keene, B. H, Kang, W. G. Kim, S. J. Kim, A. Salleo, and H. J. Kim, ACS Appl. Mater. Interfaces, 2020, 12, 2615-2 37, 1006 (2016).
- [24] T. Toda, G. Tatsuoka, Y. Magari, and M. Furuta, IEEE Electron Device Lett., 37, 1006 (2016).

15

- [25] G. Kwon, K. Kim, B. Choi, J. Roh, C. Lee, Y. Y. Noh, S. Seo, M. Kim, and C. Kim, Adv. Mater., 29, 1607055 (2017).
- [26] M. N. Le, H. Kim, Y. Kang, Y. Song, X. Guo, Y. Ha, C. Kim, and M. Kim, J. Mater. Chem. C., 10635 (2019).
- [27] B. Park, D. Ho, G. Kwon, D. Kim, S.Y. Seo, C. Kim, and M. Kim, Adv. Funct. Mater., 28, 1802717 (2018).
- [28] J. P. Bermundo, Y. Ishikawa, H. Yamazaki, T. Nonaka, M. N. Fujii, and Y. Uraoka, Appl. Phys. Lett., 107, 033504 (2015).

저/자/약/력

성명 호동일

학력 2017년 서강대학교 화공생명공학과 공학사

2020년 - 현재

2017년 - 현재 서강대학교 화공생명공학과 석박사통합 과정

성명 김충익

경력

학력 2003년 서울대학교 화학과 이학사

2009년 Northwestern University 이학박사

> 2009년 - 2010년 Harvard University 박사후연구원 2011년 - 2015년 서강대학교 화공생명공학과 조교수 2015년 - 2020년 서강대학교 화공생명공학과 부교수

> > 서강대학교 화공생명공학과 교수