참고문헌
- 유현균, 박귀일, 이건재, 웨어러블/플렉시블 전자 소재 연구동향, 재료마당, 28, 4-15 (2015).
- 양용석, 유인규, 윤호경, 홍성훈, 박주현, 장문규, 이진호, 인쇄전자 기술 및 동향, 미래 부품소재 기술 특집, 28, 1-11 (2013).
- 정부연, 웨어러블 디바이스 시장 현황과 전망, 정보통신방송정책, 30, 1-7 (2018).
- 박정용, 박재수, 인쇄전자 산업시장의 현황과 전망, 한국정보통신학회 논문지, 17, 263-267 (2012).
- J. Tate, J. A. Rogers, C. D. W. Jones, B. Vyas, D. W. Murphy, W. Li, Z. Bao, R. E. Slusher, A. Dodabalapur, and H. E. Katz, Anodization and microcontact printing on electroless silver: Solution-based fabrication procedures for low-voltage electronic systems with organic active components, Langmuir, 16, 6054-6060 (2000). https://doi.org/10.1021/la991646b
- S. Chao and M. S. Wrighton, Solid-state microelectrochemistry: Electrical characteristics of a solid-state microelectrochemical transistor based on poly(3-methylthiophene), J. Am. Chem. Soc., 109, 2197-2199 (1987). https://doi.org/10.1021/ja00241a057
- S. Chao and M. S. Wrighton, Characterization of a solid-state polyaniline-based transistor: Watervapor dependent characteristics of a device employing a poly(vinylalcohol)/phosphoric acid solid-state electrolyte, J. Am. Chem. Soc., 109, 6627-6631 (1987). https://doi.org/10.1021/ja00256a011
- D. Ofer, R. M. Crooks, and M. S. Wrighton, Potential dependence of the conductivity of highly oxidized polythiophenes, polypyrroles, and polyaniline: Finite windows of high conductivity, J. Am. Chem. Soc., 112, 7869-7879 (1990). https://doi.org/10.1021/ja00178a004
- M. Berggren and A. Richter-Dahlfors, Organic bioelectronics, Adv. Mater., 19, 3201-3213 (2007). https://doi.org/10.1002/adma.200700419
- P. Andersson, D. Nilsson, P. O. Svensson, M. X. Chem, A. Malmstorm, T. Remonen, T. Kugler, and M. Berggren, Active matrix displays basedon all-organic electrochemical smart pixels printed on paper, Adv. Mater., 14, 1460-1464 (2002). https://doi.org/10.1002/1521-4095(20021016)14:20<1460::AID-ADMA1460>3.0.CO;2-S
- J. Bausells, J. Carrabina, A. Errachid, and A. Merlos, Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology, Sens. Actuator B-Chem., 57, 56-62 (1999). https://doi.org/10.1016/S0925-4005(99)00135-5
- T. G. Backlund, H. G. O. Sandberg, R. Osterbacka, and H. Stubb, Current modulation of a hygroscopic insulator organic field-effect transistor, Appl. Phys. Lett., 85, 3887-3889 (2004). https://doi.org/10.1063/1.1811798
- J. T. Ye, S. Inoue, K. Kobayashi, Y. Kasahara, H. T. Yuan, H. Shimotani, and Y. Iwasa, Liquid-gated interface superconductivity on an atomically flat film, Nat. Mater., 9, 125-128 (2010). https://doi.org/10.1038/nmat2587
- H. Yuan, H. Shimotani, A. Tsukazaki, A. Ohtomo, M. Kawasaki, and Y. Iwasa, High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids, Adv. Funct. Mater., 19, 1046-1053 (2009). https://doi.org/10.1002/adfm.200801633
- M. J. Panzer, C. R. Newman, and C. D. Frisbie, Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric, Appl. Phys. Lett., 86, 103503 (2005). https://doi.org/10.1063/1.1880434
- J. Takeya, K. Yamada, K. Hara, K. Shigeto, K. Tsukaegoshi, S. Ikenhara, and Y. Aoyagi, High-density electrostatic carrier doping in organic single-crystal transistors with polymer gel electrolyte, Appl. Phys. Lett., 88, 112102 (2006). https://doi.org/10.1063/1.2186513
- T. A. Skotheim and O. Inganas, Polymer solid electrolyte photoelectrochemical cells with n-Si-polypyrrole photoelectrodes, J. Electrochem. Soc., 132, 2116-2120 (1985). https://doi.org/10.1149/1.2114301
- T. A. Skotheim and O. Inganas, Charge transfer between polypyrrole coated n-Si electrodes and solid polymer electrolytes, Mol. Cryst. Liquid Cryst., 121, 285-289 (1985). https://doi.org/10.1080/00268948508074876
- J. Lee, L. G. Kaake, J. H. Cho, X. Y. Zhu, T. P. Lodge, and C. D. Frisbie, Ion gel-gated polymer thin-film transistors: Operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability, J. Phys. Chem. C, 113, 8972-8981 (2009). https://doi.org/10.1021/jp901426e
- D. Ofer and M. S. Wrighton, Potential dependence of the conductivity of poly(3-methylthiophene) in liquid sulfur dioxide/electrolyte: A finite potential window of high conductivity, J. Am. Chem. Soc., 110, 4467-4468 (1988). https://doi.org/10.1021/ja00221a087
- H. S. White, G. P. Kittlesen, and M. S. Wrighton, Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor, J. Am. Chem. Soc., 106, 5375-5377 (1985). https://doi.org/10.1021/ja00330a070
- J. Pu, Y. Yomogida, K. Liu, L. Li, Y. Iwasa, and T. Takenobu, Highly flexible MoS2 thin-film transistors with ion Gel dielectrics, Nano Lett., 12, 4013-4017 (2012). https://doi.org/10.1021/nl301335q
- M, Ha, Y. Xia, A. A. Green, W. Zhang, M. J. Renn, C. H. Kim, M. C. Hersam, and C. D. Frisbie, Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks, ACS Nano, 4, 4388-4395 (2010). https://doi.org/10.1021/nn100966s
- M. Ha, J. -W. T. Seo, P. L. Prabhumirashi, W. Zhang, M. L. Geier, M. J. Renn, C. H. Kim, M. C. Hersam, and C. D. Frisbie, Aerosol jet printed, low voltage, electrolye gated carbon nanotube ring oscillators with sub-5μs stage delays, Nano Lett., 13, 954-960 (2013). https://doi.org/10.1021/nl3038773
- P. A. Ersman, R. Lassnig, J. Strandberg, D. Tu, V. Keshmiri, R. Forchhimer, G. Gustafsson, and M. Berggren, All-printed large-scale integrated circuits based on organic electrochemical transistors, Nat. Commun., 10, 5053 (2019). https://doi.org/10.1038/s41467-019-13079-4
- A. Campana, T. Cramer, D. T. Simon, M. Berggren, and F. Biscarini, Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold, Adv. Mater., 26, 3874-3878 (2014). https://doi.org/10.1002/adma.201400263
- P. Lin, F. Yan, J. Yu, H. L. W. Chan, and M. Yang, The application of organic electrochemical transistorsin cell-based biosensors, Adv. Mater., 22, 3655-3660 (2010). https://doi.org/10.1002/adma.201000971
- L. H. Jimison, s. A. Tria, D. Khodagholy, M. Gurfinkel, E. Lanzarini, A. Hama, G. G. Malliaras, and R. M. Owens, Measurement of barrier tissue integrity with an organic electrochemical transistor, Adv. Mater., 24, 5919-5923 (2012). https://doi.org/10.1002/adma.201202612
- A. Romeo, G. Tarabella, P. D'Angelo, C. Caffara, D. Cretella, R. Alfieri, P. G. Petronini, and S. Iannotta, Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system, Biosens. Bioelectron., 68, 791-797 (2015). https://doi.org/10.1016/j.bios.2015.01.073
- H. Tang, F. Yan, P. Lin, J. Xu, and H. L. W. Chan, Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials, Adv. Funct. Mater., 21, 2264-2272 (2011). https://doi.org/10.1002/adfm.201002117
- P. Gkoupidenis, N. Schaefer, B. Garlan, and G. G. Malliaras, Neuromorphic functions in PEDOT : PSS organic electrochemical transistors, Adv. Mater., 27, 7176-7180 (2015). https://doi.org/10.1002/adma.201503674
- P. Gkoupidenis, D. A. Koutsouras, T. Lonjaret, J. A. Firfield, and G. G. Malliaras, Orientation selectivity in a multi-gated organic electrochemical transistor, Sci. Rep., 6, 27007 (2016). https://doi.org/10.1038/srep27007
- P. Gkoupidenis, D. A. Koutsouras, and G. G. Malliaras, Neuromorphic device architectures with global connectivity through electrolyte gating, Nat. Commun., 8, 15448 (2017). https://doi.org/10.1038/ncomms15448
- A. Cifarelli, T. Berzina, A. Parisini, V. Erokhin, and S. Iannotta, Polysaccarides-based gels and solid-state electronic devices with memresistive properties: Synergy between polyaniline electrochemistry and biology, AIP Adv., 6, 111302 (2016). https://doi.org/10.1063/1.4966559
- B. C. Das, R. G. Pillai, Y. Wu, and R. L. McCreery, Redox-gated three-terminal organic memory devices: Effect of composition and environment on performance, ACS Appl. Mater. Interfaces, 5, 11052-11058 (2013). https://doi.org/10.1021/am4032828
- B. C. Das, B. Szeto, D. D. James, Y. Wu, and R. L. McCreery, Ion transport and switching speed in redox-gated 3-terminal organic memory devices, J. Electrochem. Soc., 161, H831-H838 (2014). https://doi.org/10.1149/2.0831412jes
- A. V. Emelyanov, D. A. Lapkin, V. A. Demin, V. V. Erokhin, S. Battistoni, G. Baldi, A. Dimonte, A. N. Korovin, S. Iannotta, P. K. Kashkarov, and M. V. Kovalchuk, First steps towards the realization of a double layer perceptron based on organic memristive devicesm, AIP Adv., 6, 111301 (2016). https://doi.org/10.1063/1.4966257