Recent Research Trend in Nanocrystal based wearable Sensor

나노 입자 기반의 웨어러블 센서 연구동향

  • Park, Taesung (Department of Materials Science and Engineering, Korea University) ;
  • Woo, Ho Kun (Department of Materials Science and Engineering, Korea University) ;
  • Oh, Soong Ju (Department of Materials Science and Engineering, Korea University)
  • 박태성 (고려대학교 신소재공학과) ;
  • 우호균 (고려대학교 신소재공학과) ;
  • 오승주 (고려대학교 신소재공학과)
  • Published : 2020.06.30

Abstract

최근 개개인 건강에 대한 관심이 증가하고 사물인터넷이 발달함에 따라 웨어러블 헬스케어 분야 시장이 급속도로 성장하고 있다. 특히 인체에서 발생하는 신호를 실시간으로 감지하고 모니터링 할 수 있는 웨어러블 센서의 중요도가 늘어나고 있으며 특히 맥박에 의한 혈관 변화처럼 미세한 인체의 변형 신호나 체온, 외부의 온도 등에 의해 발생하는 신호를 감지할 수 있는 고감도 스트레인 센서와 온도 센서에 대한 관심이 증가하고 있다. 하지만 현재 사용되고 있는 웨어러블 센서들은 몇 가지의 한계점을 가지고 있으며 상용화되기에 부족한 문제가 있었다. 본고에서는 이와 같은 기존 웨어러블 센서의 문제를 해결할 수 있는 소재로 각광받고 있는 나노 입자 기반 웨어러블 센서에 대하여 다루고자 한다. 나노 입자를 사용한 웨어러블센서는 간단한 방법으로 고감도를 확보할 수 있고 용액 공정을 통해 저가로 생산이 가능하기 때문에 웨어러블 센서 소재로서 적합하다. 여기서는 나노 입자의 기본적 특성과 나노 입자 기반 스트레인 센서 및 온도 센서 동향을 소개한다. 차세대 헬스케어 분야의 선두 주자가 되기 위해서는 나노 소재를 기반으로 한 웨어러블 센서의 개발과 연구가 중요하다.

Keywords

References

  1. X. Chen, H. Liu, Y. Zheng, Y. Zhai, X. Liu, C. Liu, L. Mi, Z. Guo, and C. Shen, Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor, ACS Appl. Mater. Interfaces., 11, 42594-42606 (2019). https://doi.org/10.1021/acsami.9b14688
  2. Y. Guo, M. Zhong, Z. Fang, P. Wan, and G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing, Nano Lett., 19, 1143-1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
  3. H. Liu, Q. Li, Y. Bu, N. Zhang, C. Wang, C. Pan, L. Mi, Z. Guo, C. Liu, and C. Shen, Stretchable conductive nonwoven fabrics with self-cleaning capability for tunable wearable strain sensor, Nano Energy, 66, 104143 (2019). https://doi.org/10.1016/j.nanoen.2019.104143
  4. J. Guo, B. Zhou, C. Yang, Q. Dai, and L. Kong, Stretchable and temperature-sensitive polymer optical fibers for wearable health monitoring, Adv. Funct. Mater., 29, 1-8 (2019).
  5. J. Shin, B. Jeong, J. Kim, V. B. Nam, Y. Yoon, J. Jung, S. Hong, H. Lee, H. Eom, J. Yeo, J. Choi, D. Lee, and S. H. Ko, Sensitive wearable temperature sensor with seamless monolithic integration, Adv. Mater., 32, 1-9 (2020).
  6. P. Wang, W. Wei, Z. Li, W. Duan, H. Han, and Q. Xie, A superhydrophobic fluorinated PDMS composite as a wearable strain sensor with excellent mechanical robustness and liquid impalement resistance, J. Mater. Chem. A, 8, 3509-3516 (2020). https://doi.org/10.1039/c9ta13281c
  7. J. Gao, L. Wu, Z. Guo, J. Li, C. Xu, and H. Xue, A hierarchical carbon nanotube/SiO2 nanoparticle network induced superhydrophobic and conductive coating for wearable strain sensors with superior sensitivity and ultra-low detection limit, J. Mater. Chem. C, 7, 4199-4209 (2019). https://doi.org/10.1039/c8tc06565a
  8. J. Park, Y. Lee, M. H. Barbee, S. Cho, S. Cho, R. Shanker, J. Kim, J. Myoung, M. P. Kim, C. Baig, S. L. Craig, and H. Ko, A hierarchical nanoparticle-in-micropore architecture for enhanced mechanosensitivity and stretchability in mechanochromic electronic skins, Adv. Mater., 31, 1-10 (2019).
  9. H. Oh, S. W. Lee, M. Kim, W. S. Lee, M. Seong, H. Joh, M. G. Allen, G. S. May, M. S. Bakir, and S. J. Oh, Designing surface chemistry of silver nanocrystals for radio frequency circuit applications, ACS Appl. Mater. Interfaces, 10, 37643-37650 (2018). https://doi.org/10.1021/acsami.8b12005
  10. M. S. Kang, H. Joh, H. Kim, H. W. Yun, D. Kim, H. K. Woo, W. S. Lee, S. H. Hong, and S. J. Oh, Synergetic effects of ligand exchange and reduction process enhancing both electrical and optical properties of Ag nanocrystals for multifunctional transparent electrodes, Nanoscale, 10, 18415-18422 (2018). https://doi.org/10.1039/c8nr05212c
  11. M. Nankali, N. M. Nouri, M. Navidbakhsh, N. Geran Malek, M. A. Amindehghan, A. Montazeri Shahtoori, M. Karimi, and M. Amjadi, Highly stretchable and sensitive strain sensors based on carbon nanotube-elastomer nanocomposites: The effect of environmental factors on strain sensing performance, J. Mater. Chem. C (2020).
  12. Z. He, G. Zhou, J. H. Byun, S. K. Lee, M. K. Um, B. Park, T. Kim, S. B. Lee, and T. W. Chou, Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors, Nanoscale, 11, 5884-5890 (2019). https://doi.org/10.1039/c9nr01005j
  13. J. Ramirez, D. Rodriquez, A. D. Urbina, A. M. Cardenas, and D. J. Lipomi, Combining high sensitivity and dynamic range: Wearable thin-film composite strain sensors of graphene, ultrathin palladium, and PEDOT:PSS, ACS Appl. Nano Mater., 2, 2222-2229 (2019). https://doi.org/10.1021/acsanm.9b00174
  14. T. Huang, P. He, R. Wang, S. Yang, J. Sun, X. Xie, and G. Ding, Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain Ssensors, Adv. Funct. Mater., 29, 1-9 (2019).
  15. L. Wang, Y. Chen, L. Lin, H. Wang, X. Huang, H. Xue, and J. Gao, Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite, Chem. Eng. J., 362, 89-98 (2019). https://doi.org/10.1016/j.cej.2019.01.014
  16. Y. Lu, Z. Liu, H. Yan, Q. Peng, R. Wang, M. E. Barkey, J. W. Jeon, and E. K. Wujcik, Ultrastretchable conductive polymer complex as a strain sensor with a repeatable autonomous self-healing ability, ACS Appl. Mater. Interfaces, 11, 20453-20464 (2019). https://doi.org/10.1021/acsami.9b05464
  17. S. W. Lee, H. Joh, M. Seong, W. S. Lee, J. H. Choi, and S. J. Oh, Engineering surface ligands of nanocrystals to design high performance strain sensor arrays through solution processes, J. Mater. Chem. C, 5, 2442-2450 (2017). https://doi.org/10.1039/C7TC00230K
  18. W. S. Lee, D. Kim, B. Park, H. Joh, H. K. Woo, Y. K. Hong, T. I. Kim, D. H. Ha, and S. J. Oh, Multiaxial and transparent strain sensors based on synergetically reinforced and orthogonally cracked hetero-nanocrystal solids, Adv. Funct. Mater., 29, 1-12 (2019).
  19. Z. Yang, D. Y. Wang, Y. Pang, Y. X. Li, Q. Wang, T. Y. Zhang, J. Bin Wang, X. Liu, Y. Y. Yang, J. M. Jian, M. Q. Jian, Y. Y. Zhang, Y. Yang, and T. L. Ren, Simultaneously detecting subtle and intensive human motions based on a silver nanoparticles bridged graphene strain sensor, ACS Appl. Mater. Interfaces, 10, 3948-3954 (2018). https://doi.org/10.1021/acsami.7b16284
  20. J. Wu, Z. Wu, Y. Wei, H. Ding, W. Huang, X. Gui, W. Shi, Y. Shen, K. Tao, and X. Xie, Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing organohydrogels, ACS Appl. Mater. Interfaces (2020).
  21. R. Shi, L. Ning, Y. Huang, Y. Tao, L. Zheng, Z. Li, and H. Liang, Li4SrCa(SiO4)2:Eu2+: A potential temperature sensor with unique optical thermometric properties, ACS Appl. Mater. Interfaces, 11, 9691-9695 (2019). https://doi.org/10.1021/acsami.8b22754
  22. C. Liu, Y. Jiang, B. Du, T. Wang, D. Feng, B. Jiang, and D. Yang, Strain-insensitive twist and temperature sensor based on seven-core fiber, Sensors Actuators, A Phys., 290, 172-176 (2019). https://doi.org/10.1016/j.sna.2019.03.026
  23. Y. He, W. Li, N. Han, J. Wang, and X. Zhang, Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor, Appl. Energy, 247, 615-629 (2019). https://doi.org/10.1016/j.apenergy.2019.04.077
  24. C. Zhu, H.C. Wu, G. Nyikayaramba, Z. Bao, and B. Murmann, intrinsically stretchable temperature sensor based on organic thin-film transistors, IEEE Electron Device Lett., 40, 1630-1633 (2019). https://doi.org/10.1109/led.2019.2933838
  25. T. N. Ly and S. Park, Wearable strain sensor for human motion detection based on ligand-exchanged gold nanoparticles, J. Ind. Eng. Chem., 82, 122-129 (2020). https://doi.org/10.1016/j.jiec.2019.10.003
  26. Y. Xin, J. Zhou, and G. Lubineau, A highly stretchable strain-insensitive temperature sensor exploits the Seebeck effect in nanoparticle-based printed circuits, J. Mater. Chem. A, 7, 24493-24501 (2019). https://doi.org/10.1039/c9ta07591g
  27. H. Joh, S. W. Lee, M. Seong, W. S. Lee, and S. J. Oh, Engineering the charge transport of Ag nanocrystals for highly accurate, wearable temperature sensors through all-solution processes, Small, 13, 1-11 (2017).
  28. J. Bang, W. S. Lee, B. Park, H. Joh, H. K. Woo, S. Jeon, J. Ahn, C. Jeong, T. I. Kim, and S. J. Oh, Highly sensitive temperature sensor: Ligand-treated Ag nanocrystal thin films on PDMS with thermal expansion strategy, Adv. Funct. Mater., 29, 1-8 (2019).
  29. A. Choe, J. Yeom, R. Shanker, M. P. Kim, S. Kang, and H. Ko, Stretchable and wearable colorimetric patches based on thermoresponsive plasmonic microgels embedded in a hydrogel film, NPG Asia Mater., 10, 912-922 (2018). https://doi.org/10.1038/s41427-018-0086-6