Recent Research Trend in Electrodes of Lithium Ion Battery based on Computational Materials Science Approaches

전산재료과학 기반 리튬이온전지 전극 소재의 연구동향

  • Kang, Haisu (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Lee, Seung Geol (Department of Organic Material Science and Engineering, Pusan National University)
  • 강혜수 (부산대학교 유기소재시스템공학과) ;
  • 이승걸 (부산대학교 유기소재시스템공학과)
  • Published : 2020.02.28

Abstract

계속적인 충·방전이 가능하여 반영구적으로 사용이 가능한 2차 전지는 친환경 소재로 주목받고 있으며, 노트북 컴퓨터와 휴대전화, 캠코더 등 소형 전자기기뿐만 아니라 전기자동차의 핵심소재이다. 전기자동차 시장의 성장과 더불어 중대형 에너지 저장용 2차 전지 시장의 규모는 더욱 확대되고 있어 관련된 소재의 개발 경쟁과 관심이 날이 갈수록 뜨거워지고 있다. 따라서 소재개발 측면에서 2차 전지 핵심 소재의 물성 발현의 원리 등을 이해하고 최적 소재 설계를 위해서는 원자 레벨에서의 소재 설계 접근법이 필요하다. 따라서 실험적인 연구가 어려운 부분과 원자단위에서의 물질 현상에 대한 이해 그리고 연구 개발의 효율성 증진을 위해서 전산재료과학(computational materials science) 기술이 광범위하게 활용될 수 있다. 본 기고문에서는 리튬이온전지에서의 전극 소재에 대한 전산재료모사의 활용과 연구동향에 대하여 소개하고자 한다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단(글로벌프론티어사업, 하이브리드 인터페이스기반 미래소재연구단)의 지원을 받아 작성되었음(No. 2013M3A6B1078882). 이 논문은 2019년도 BB21+ 사업에 의하여 지원되어 작성되었음.

References

  1. J. B. Goodenough and K. S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc., 135, 1167-1176 (2013). https://doi.org/10.1021/ja3091438
  2. J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359-367 (2001). https://doi.org/10.1038/35104644
  3. A. P. Wang, S. Kadam, H. Li, S. Q. Shi, and Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, Npj Comput. Mater., 4, 15 (2018). https://doi.org/10.1038/s41524-018-0064-0
  4. C. X. Zu and H. Li, Thermodynamic analysis on energy densities of batteries, Energ. Environ. Sci., 4, 2614-2624 (2011). https://doi.org/10.1039/c0ee00777c
  5. P. Ganesh, J. Kim, C. Park, M. Yoon, F. A. Reboredo, and P. R. C. Kent, Binding and diffusion of lithium in graphite: Quantum Monte Carlo benchmarks and validation of van der Waals density functional methods, J. Chem. Theory. Comput., 10, 5318-5323 (2014). https://doi.org/10.1021/ct500617z
  6. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Carbon nanotubes - the route toward applications, Science, 297, 787-792 (2002). https://doi.org/10.1126/science.1060928
  7. J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, Nanotube molecular wires as chemical sensors, Science, 287, 622-625 (2000). https://doi.org/10.1126/science.287.5453.622
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666-669 (2004). https://doi.org/10.1126/science.1102896
  9. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Carbon nanotube single-electron transistors at room temperature, Science, 293, 76-79 (2001). https://doi.org/10.1126/science.1061797
  10. W. Koh, J. I. Choi, K. Donaher, S. G. Lee, and S. S. Jang, Mechanism of Li adsorption on carbon nanotube-fullerene hybrid system: A first-principles study, Acs Appl. Mater. Inter., 3, 1186-1194 (2011). https://doi.org/10.1021/am200018w
  11. W. Koh, J. I. Choi, S. G. Lee, W. R. Lee, and S. S. Jang, First-principles study of Li adsorption in a carbon nanotube-fullerene hybrid system, Carbon, 49, 286-293 (2011). https://doi.org/10.1016/j.carbon.2010.09.022
  12. W. Koh, J. I. Choi, E. Jeong, S. G. Lee, and S. S. Jang, Li adsorption on a fullerene-single wall carbon nanotube hybrid system: Density functional theory approach, Curr. Appl. Phys., 14, 1748-1754 (2014). https://doi.org/10.1016/j.cap.2014.09.031
  13. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science, 270, 590-593 (1995). https://doi.org/10.1126/science.270.5236.590
  14. Y. H. Liu, J. S. Xue, T. Zheng, and J. R. Dahn, Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins, Carbon, 34, 193-200 (1996). https://doi.org/10.1016/0008-6223(96)00177-7
  15. S. M. Mukhopadhyay, Nanoscale Multifunctional Materials: Science and Applications, Wiley, Hoboken, N.J. (2012).
  16. W. Q. Deng, X. Xu, and W. A. Goddard, New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation, Phys. Rev. Lett., 92, 166103 (2004). https://doi.org/10.1103/PhysRevLett.92.166103
  17. G. Mpourmpakis, E. Tylianakis, and G. E. Froudakis, Carbon nanoscrolls: A promising material for hydrogen storage, Nano Lett., 7, 1893-1897 (2007). https://doi.org/10.1021/nl070530u
  18. E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, and I. Honma, Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries, Nano Lett., 8, 2277-2282 (2008). https://doi.org/10.1021/nl800957b
  19. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S.T. Nguyen, and R. S. Ruoff, Graphene-based composite materials, Nature, 442, 282-286 (2006). https://doi.org/10.1038/nature04969
  20. W. Koh, H. S. Moon, S. G. Lee, J. I. Choi, and S. S. Jang, A first-principles study of lithium adsorption on a graphene-fullerene nanohybrid system, Chemphyschem, 16, 789-795 (2015). https://doi.org/10.1002/cphc.201402675
  21. W. Koh, J. H. Lee, S. G. Lee, J. I. Choi, and S. S. Jang, Li adsorption on a graphene-fullerene nanobud system: Density functional theory approach, RSC Adv., 5, 32819-32825 (2015). https://doi.org/10.1039/c4ra15619f
  22. N. Q. Hai, S. H. Kwon, H. Kim, I. T. Kim, S. G. Lee, and J. Hur, High-performance MoS2-based nanocomposite anode prepared by high-energy mechanical milling: The effect of carbonaceous matrix on MoS2, Electrochim. Acta, 260, 129-138 (2018). https://doi.org/10.1016/j.electacta.2017.11.068
  23. Z. C. Wu, B. E. Li, Y. J. Xue, J. J. Li, Y. L. Zhang, and F. Gao, Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors, J. Mater. Chem. A, 3, 19445-19454 (2015). https://doi.org/10.1039/C5TA04549E
  24. X. Q. Zhang, X. N. Li, J. W. Liang, Y. C. Zhu, and Y. T. Qian, Synthesis of MoS2@C nanotubes via the kirkendall effect with enhanced electrochemical performance for lithium ion and sodium ion batteries, Small, 12, 2484-2491 (2016). https://doi.org/10.1002/smll.201600043
  25. J. H. Lee, S. G. Kang, I. T. Kim, S. Kwon, I. Lee, and S. G. Lee, Adsorption mechanisms of lithium oxides (LixO2) on N-doped graphene: A density functional theory study with implications for lithium-air batteries, Theor. Chem. Acc., 135, 1-9 (2016). https://doi.org/10.1007/s00214-015-1755-y
  26. J. H. Lee, S. G. Kang, H. S. Moon, H. Park, I. T. Kim, and S. G. Lee, Adsorption mechanisms of lithium oxides (LixO2) on a graphene-based electrode: A density functional theory approach, Appl. Surf. Sci., 351, 193-202 (2015). https://doi.org/10.1016/j.apsusc.2015.05.119
  27. T. V. Tam, S. G. Kang, M. H. Kim, S. G. Lee, S. H. Hur, J. S. Chung, and W. M. Choi, Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn-air batteries and overall water splitting, Adv. Energy Mater., 9, (2019).
  28. T. Van Tam, S. G. Kang, K. F. Babu, E. S. Oh, S. G. Lee, and W. M. Choi, Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction, Journal of Materials Chemistry A, 5, 10537-10543 (2017). https://doi.org/10.1039/C7TA01485F
  29. H. W. Lee, H. S. Moon, J. Hur, I. T. Kim, M. S. Park, J. M. Yun, K. H. Kim, and S. G. Lee, Mechanism of sodium adsorption on N-doped graphene nanoribbons for sodium ion battery applications: A density functional theory approach, Carbon, 119, 492-501 (2017). https://doi.org/10.1016/j.carbon.2017.04.033
  30. R. V. Chebiam, A. M. Kannan, F. Prado, and A. Manthiram, Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries, Electrochem. Commun., 3, 624 (2001). https://doi.org/10.1016/S1388-2481(01)00232-6
  31. R. V. Chebiam, F. Prado, and A. Manthiram, Structural instability of delithiated Li1-xNi1-yCoyO2 cathodes, J. Electrochem. Soc., 148, A49 (2001). https://doi.org/10.1149/1.1339029
  32. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCoO2 (0 < x ≤ 1): A new cathode material for batteries of high energy density, Mater. Res. Bull., 15, 783 (1980). https://doi.org/10.1016/0025-5408(80)90012-4
  33. S. Venkatraman, Y. Shin, and A. Manthiram, Phase relationships and structural and chemical stabilities of Charged Li1-xCoO2-δ and Li1-xNi0.85Co0.15O2-δ, Electrochem. Solid-State Lett., 6, A9 (2003). https://doi.org/10.1149/1.1525430
  34. X. Gonze and C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Physical Review B, 55, 10355 (1997). https://doi.org/10.1103/physrevb.55.10355
  35. T. Du, B. Xu, M. Wu, G. Liu, and C. Ouyang, Insight into the vibrational and thermodynamic properties of layered lithium transition-metal oxides LiMO2 (M = Co, Ni, Mn): A first-principles study, The Journal of Physical Chemistry C, 120, 5876-5882 (2016). https://doi.org/10.1021/acs.jpcc.5b11891
  36. J. N. Reimers and J. Dahn, Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2, Journal of The Electrochemical Society, 139, 2091-2097 (1992). https://doi.org/10.1149/1.2221184
  37. M. Zou, M. Yoshio, S. Gopukumar, and J.-I. Yamaki, Synthesis and electrochemical performance of high voltage cycling LiM0.05Co0.95O2 as cathode material for lithium rechargeable cells, Electrochemical and Solid-State Letters, 7, A176-A179 (2004). https://doi.org/10.1149/1.1738423
  38. M. Yoshio, Y. Todorov, K. Yamato, H. Noguchi, J.-i. Itoh, M. Okada, and T. Mouri, Preparation of LiyMnxNi1-xO2 as a cathode for lithium-ion batteries, Journal of Power Sources, 74, 46-53 (1998). https://doi.org/10.1016/S0378-7753(98)00011-1
  39. P.-H. Duvigneaud and T. Segato, Synthesis and characterisation of LiNi1-x-yCoxAlyO2 cathodes for lithium-ion batteries by the PVA precursor method, Journal of the European Ceramic Society, 24, 1375-1380 (2004). https://doi.org/10.1016/S0955-2219(03)00565-X
  40. P. Suresh, A. K. Shukla, and N. Munichandraiah, Characterization of Zn- and Fe-substituted LiMnO2 as cathode materials in Li-ion cells, Journal of Power Sources, 161, 1307-1313 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.098
  41. X. M. Wu, R. X. Li, S. Chen, Z. Q. He, and M. F. Xu, Comparative study of Co, Cr and Al-doped LiMnO2 prepared by ion exchange, Bulletin of Materials Science, 31, 109-113 (2008). https://doi.org/10.1007/s12034-008-0019-z
  42. S. Kim, J.-K. Noh, S. Yu, W. Chang, K.Y. Chung, and B.-W. Cho, Effects of transition metal doping and surface treatment to improve the electrochemical performance of Li2MnO3, Journal of Electroceramics, 30, 159-165 (2013). https://doi.org/10.1007/s10832-012-9778-4
  43. D. Mori, H. Sakaebe, M. Shikano, H. Kojitani, K. Tatsumi, and Y. Inaguma, Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li2MnO3 as a novel cathode material, Journal of Power Sources, 196, 6934-6938 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.150
  44. F. Kong, R.C. Longo, M.-S. Park, J. Yoon, D.-H. Yeon, J.-H. Park, W.-H. Wang, S. Kc, S.-G. Doo, and K. Cho, Ab initio study of doping effects on LiMnO2 and Li2MnO3 cathode materials for Li-ion batteries, Journal of Materials Chemistry A, 3, 8489-8500 (2015). https://doi.org/10.1039/C5TA01445J
  45. M. Nakayama, M. Kaneko, Y. Uchimoto, M. Wakihara, and K. Kawamura, Molecular dynamics simulations of LiCoyMn2-yO4 cathode materials for rechargeable Li ion batteries, The Journal of Physical Chemistry B, 108, 3754-3759 (2004). https://doi.org/10.1021/jp0374105
  46. S. Lee, J. Park, A. M. Sastry, and W. Lu, Molecular dynamics simulations of SOC-dependent elasticity of LixMn2O4 spinels in Li-ion batteries, Journal of the Electrochemical Society, 160, A968-A972 (2013). https://doi.org/10.1149/2.147306jes
  47. B. Deng, H. Nakamura, and M. Yoshio, Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures, Journal of Power Sources, 180, 864-868 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.071
  48. D. H. Jang, Y. J. Shin, and S. M. Oh, Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells, Journal of The Electrochemical Society, 143, 2204-2211 (1996). https://doi.org/10.1149/1.1836981
  49. T. Inoue and M. Sano, An investigation of capacity fading of manganese spinels stored at elevated temperature, Journal of The Electrochemical Society, 145, 3704-3707 (1998). https://doi.org/10.1149/1.1838862
  50. S. Kim, M. Aykol, and C. Wolverton, Surface phase diagram and stability of (001) and (111) LiMn2O4 spinel oxides, Physical Review B, 92, 115411 (2015). https://doi.org/10.1103/physrevb.92.115411
  51. A. Asadi, S. F. Aghamiri, and M. R. Talaie, Molecular dynamics simulation of a LixMn2O4 spinel cathode material in Li-ion batteries, RSC Adv., 6, 115354-115363 (2016). https://doi.org/10.1039/C6RA13878K
  52. M. Milovic, D. Jugovic, N. Cvjeticanin, D. Uskokovic, A. S. Milosevic, Z. S. Popovic, and F. R. Vukajlovic, Crystal structure analysis and first principle investigation of F doping in LiFePO4, Journal of Power Sources, 241, 70-79 (2013). https://doi.org/10.1016/j.jpowsour.2013.04.109
  53. B. L. Ellis, K. T. Lee, and L. F. Nazar, Positive electrode materials for Li-ion and Li-batteries, Chemistry of Materials, 22, 691-714 (2010). https://doi.org/10.1021/cm902696j
  54. K. Zaghib, A. Guerfi, P. Hovington, A. Vijh, M. Trudeau, A. Mauger, J. B. Goodenough, and C. M. Julien, Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends, Journal of Power Sources, 232, 357-369 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.095
  55. J. Y. Xiang, J. P. Tu, L. Zhang, X. L. Wang, Y. Zhou, Y. Q. Qiao, and Y. Lu, Improved electrochemical performances of 9LiFePO4.Li3V2(PO4)/C composite prepared by a simple solid-state method, Journal of Power Sources, 195, 8331-8335 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.070
  56. W. L. Liu, J. P. Tu, Y. Q. Qiao, J. P. Zhou, S. J. Shi, X. L. Wang, and C. D. Gu, Optimized performances of core-shell structured LiFePO4/C nanocomposite, Journal of Power Sources, 196, 7728-7735 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.046
  57. J. Orlenius, O. Lyckfeldt, K. A. Kasvayee, and P. Johander, Water based processing of LiFePO4/C cathode material for Li-ion batteries utilizing freeze granulation, Journal of Power Sources, 213, 119-127 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.037
  58. S. E. Boulfelfel, G. Seifert, and S. Leoni, Atomistic investigation of Li+ diffusion pathways in the olivine LiFePO4 cathode material, Journal of Materials Chemistry, 21, 16365-16372 (2011). https://doi.org/10.1039/c1jm10725a
  59. A. Bhandari, P. K. Gupta, J. Bhattacharya, and R. G. S. Pala, Higher energy barrier for interfacial Li-ion transfer from EC/LiPF6 electrolyte into (010) LiFePO4 cathode surface than bulk Li-ion diffusion within both cathode and electrolyte, Journal of the Electrochemical Society, 166, A2966-A2972 (2019). https://doi.org/10.1149/2.0851913jes