이차 전지용 후막 전극 연구 동향

Recent Research Trend in Ultra-thick Electrodes for Rechargeable Batteries

  • 이정태 (경희대학교 식물환경신소재공학과)
  • Lee, Jung Tae (Department of Plant and Environmental Natural Resources, Kyung Hee University)
  • 발행 : 2020.02.28

초록

배터리 구동 기기의 사용이 계속적으로 증가하고 첨단화, 다기능화, 융합화가 되면서 고에너지 밀도 배터리에 대한 수요는 지속적으로 증가하고 있다. 배터리의 에너지 밀도를 높이는 여러 가지 전략 중에서 활물질 코팅 두께를 늘려 에너지를 저장하지 않는 집전체와 분리막의 사용량을 줄이고 배터리의 중량, 부피, 그리고 가격을 동시에 줄이는 전략은 간단하면서도 매우 효율적인 방법이다. 하지만 기존 전극 제작 방법으로 후막 전극을 제작할 경우 전극 제작 자체가 쉽지 않고 만들었다고 해도 전자와 이온의 두께 방향 이동 지연으로 인해 전극의 전기화학 특성이 좋지 않다. 이러한 문제점을 극복하고자 이차 전지용 첨단 후막 전극에 대한 연구가 활발하게 진행되고 있다. 본 기고문에서는 이차 전지용 후막 전극의 구조, 제조방법, 전기화학 특성에 관한 연구동향을 소개하고자 한다.

키워드

참고문헌

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. J. E. Aurbach, and E. Science, Challenges in the development of advanced Li-ion batteries: A review, Energy & Environ. Sci., 4, 3243-3262 (2011). https://doi.org/10.1039/c1ee01598b
  2. R. Schmuch, R. Wagner, G. Horpel, T. Placke, and M. J. N. E. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries, Nat. Energy, 3, 267-278 (2018). https://doi.org/10.1038/s41560-018-0107-2
  3. N. Liu, Z. Lu, J. Zhao, M. T. McDowell, H.-W. Lee, W. Zhao, and Y. J. N. n. Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes, Nat. Nanotechnol., 9, 187 (2014). https://doi.org/10.1038/nnano.2014.6
  4. K. J. Griffith, K. M. Wiaderek, G. Cibin, L. E. Marbella, and C. P. J. N. Grey, Niobium tungsten oxides for high-rate lithium-ion energy storage, Nature, 559, 556 (2018). https://doi.org/10.1038/s41586-018-0347-0
  5. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. J. N. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 496 (2000). https://doi.org/10.1038/35035045
  6. Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C. S. Yoon, S.-T. Myung, and K. J. N. m. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries, Nat. Mater., 11, 942 (2012). https://doi.org/10.1038/nmat3435
  7. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. J. N. M. Yushin, High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 9, 353 (2010). https://doi.org/10.1038/nmat2725
  8. Y. Jin, S. Li, A. Kushima, X. Zheng, Y. Sun, J. Xie, J. Sun, W. Xue, G. Zhou, J. J. E. Wu, and E. Science, Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%, Energy & Environ. Sci., 10, 580-592 (2017). https://doi.org/10.1039/c6ee02685k
  9. J. Cho, Y. J. Kim, T. J. Kim, and B. J. A. C. I. E. Park, Zero-strain intercalation cathode for rechargeable Li-Ion cell, Angew. Chem. Int. Ed., 40, 3367-3369 (2001). https://doi.org/10.1002/1521-3773(20010917)40:18<3367::AID-ANIE3367>3.0.CO;2-A
  10. A. J. A. P. A. Ulvestad, A brief review of current lithium ion battery technology and potential solid state battery technologies, A. Ulvestad, A Brief Review of Current Lithium Ion Battery Technology and Potential Solid State Battery Technologies, arXiv preprint arXiv:1803.04317 (2018).
  11. J. Sander, R. M. Erb, L. Li, A. Gurijala, and Y.-M. J. N. E. Chiang, High-performance battery electrodes via magnetic templating, Nat. Energy, 1, 16099 (2016). https://doi.org/10.1038/nenergy.2016.99
  12. L. L. Lu, Y. Y. Lu, Z. J. Xiao, T. W. Zhang, F. Zhou, T. Ma, Y. Ni, H. B. Yao, S. H. Yu, and Y. J. A. M. Cui, Wood-inspired high-performance ultrathick bulk battery electrodes, Adv. Mater., 30, 1706745 (2018). https://doi.org/10.1002/adma.201706745
  13. F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu, E. Hitz, Y. Tang, Y. Chen, V. L. Sprenkle, and X. J. A. E. M. Li, Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries, Adv. Energy Mater., 6, 1600377 (2016). https://doi.org/10.1002/aenm.201600377
  14. R. Elango, A. Demortiere, V. De Andrade, M. Morcrette, and V. J. A. E. M. Seznec, Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity, Adv. Energy Mater., 8, 1703031 (2018). https://doi.org/10.1002/aenm.201703031
  15. S.-H. Park, P. J. King, R. Tian, C. S. Boland, J. Coelho, C. J. Zhang, P. McBean, N. McEvoy, M. P. Kremer, and D. J. N. E. Daly, High areal capacity battery electrodes enabled by segregated nanotube networks, Nat. Energy, 1 (2019).
  16. J. Billaud, F. Bouville, T. Magrini, C. Villevieille, and A. R. J. N. E. Studart, Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries, Nat. Energy, 1, 16097 (2016). https://doi.org/10.1038/nenergy.2016.97
  17. M. Sung, K. Hattori, and S. J. M. Asai, Crystal alignment of graphite as a negative electrode material of the lithium-ion secondary batteries, Mater. & Design, 30, 387-390 (2009). https://doi.org/10.1016/j.matdes.2008.04.076
  18. M. T. Northen, C. Greiner, E. Arzt, and K. L. J. A. M. Turner, A gecko-inspired reversible adhesive, Adv. Mater., 20, 3905-3909 (2008). https://doi.org/10.1002/adma.200801340
  19. N. Nuraje, X. Dang, J. Qi, M. A. Allen, Y. Lei, and A. M. J. A. M. Belcher, Biotemplated synthesis of perovskite nanomaterials for solar energy conversion, Adv. Mater., 24, 2885-2889 (2012). https://doi.org/10.1002/adma.201200114
  20. S. W. Kim, D. H. Seo, H. Gwon, J. Kim, and K. J. A. M. Kang, Fabrication of FeF3 nanoflowers on CNT branches and their application to high power lithium rechargeable batteries, Adv. Mater., 22, 5260-5264 (2010). https://doi.org/10.1002/adma.201002879
  21. M. D. Lima, S. Fang, X. Lepro, C. Lewis, R. Ovalle-Robles, J. Carretero-Gonzalez, E. Castillo-Martinez, M. E. Kozlov, J. Oh, and N. J. S. Rawat, Biscrolling nanotube sheets and functional guests into yarns, Science, 331, 51-55 (2011). https://doi.org/10.1126/science.1195912
  22. K. Evanoff, J. Khan, A. A. Balandin, A. Magasinski, W. J. Ready, T. F. Fuller, and G. J. A. M. Yushin, Towards ultrathick battery electrodes: Aligned carbon nanotube-enabled architecture, Adv. Mater., 24, 533-537 (2012). https://doi.org/10.1002/adma.201103044
  23. N. Nitta, F. Wu, J. T. Lee, and G. J. M. T. Yushin, Li-ion battery materials: Present and future, Mater. Today, 18, 252-264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
  24. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. J. S. Yushin, A major constituent of brown algae for use in high-capacity Li-ion batteries, Science, 334, 75-79 (2011). https://doi.org/10.1126/science.1209150
  25. H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, and L. J. N. n. Hu, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 7, 310 (2012). https://doi.org/10.1038/nnano.2012.35