References
- (a) J. Wu, B. Kwon, W. Liu, E. V. Anslyn, P. Wang, and J. S. Kim, Chromogenic/fluorogenic ensemble chemosensing systems, Chemical Reviews, 115(15), 7893-7943, (2015) https://doi.org/10.1021/cr500553d
- (b) T. L. Mako, J. M. Racicot, and M. Levine, Supramolecular luminescent sensors, Chemical Reviews, 119(1), 322-477 (2019). https://doi.org/10.1021/acs.chemrev.8b00260
- S. Kolemen and E. U. Akkaya, Reaction-based BODIPY probes for selective bio-imaging, Coordin. Chem. Rev., 354, 121-134 (2018). https://doi.org/10.1016/j.ccr.2017.06.021
- A. P. de Silva, H. Q. Gunaratne, T. Gunnlaugsson, A. J. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Signaling recognition events with fluorescent sensors and switches, Chemical Reviews, 97(5), 1515-1566 (1997). https://doi.org/10.1021/cr960386p
- Y. Hong, J. W. Lam, and B. Z. Tang, Aggregation-induced emission: Phenomenon, mechanism and applications, Chemical Communications, (29), 4332-4353 (2009). https://doi.org/10.1039/b904665h
- D. Maity, M. Li, M. Ehlers, A. Gigante, and C. Schmuck, Correction: A metal-free fluorescence turn-on molecular probe for detection of nucleoside triphosphates, Chemical Communications, 53(93), 12588 (2017). https://doi.org/10.1039/C7CC90423A
- A. F. Sierra, D. Hernandez-Alonso, M. A. Romero, J. A. Gonzalez-Delgado, U. Pischel, and P. Ballester, Optical supramolecular sensing of creatinine, Journal of the American Chemical Society, 142(9), 4276-4284 (2020). https://doi.org/10.1021/jacs.9b12071
- J. J. Hu, N. K. Wong, S. Ye, X. Chen, M. Y. Lu, A. Q. Zhao, Y. Guo, A. C. Ma, A. Y. Leung, J. Shen, and D. Yang, Fluorescent probe HKSOX-1 for imaging and detection of endogenous superoxide in live cells and in vivo, Journal of the American Chemical Society, 137(21), 6837-6843 (2015). https://doi.org/10.1021/jacs.5b01881
- H. Li, X. Li, W. Shi, Y. Xu, and H. Ma, Rationally designed fluorescence (.) OH probe with high sensitivity and selectivity for monitoring the generation of (.) OH in iron autoxidation without addition of H2 O2, Angewandte Chemie, 57(39), 12830-12834 (2018). https://doi.org/10.1002/anie.201808400
- H. Li, W. Shi, X. Li, Y. Hu, Y. Fang, and H. Ma, Ferroptosis accompanied by (*)OH generation and cytoplasmic viscosity increase revealed via dual-functional fluorescence probe, Journal of the American Chemical Society, 141(45), 18301-18307 (2019). https://doi.org/10.1021/jacs.9b09722
- W. L. Jiang, Y. Li, W. X. Wang, Y. T. Zhao, J. Fei, and C. Y. Li, A hepatocyte-targeting near-infrared ratiometric fluorescent probe for monitoring peroxynitrite during drug-induced hepatotoxicity and its remediation, Chemical Communications, 55(95), 14307-14310 (2019). https://doi.org/10.1039/c9cc07017f
- W. Chen, A. Pacheco, Y. Takano, J. J. Day, K. Hanaoka, M. Xian, A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals, Angewandte Chemie, 55(34), 9993-9996 (2016). https://doi.org/10.1002/anie.201604892
- K. J. Bruemmer, O. Green, T. A. Su, D. Shabat, and C. J. Chang, Chemiluminescent probes for activity-based sensing of formaldehyde released from folate degradation in living mice, Angewandte Chemie, 57(25), 7508-7512 (2018). https://doi.org/10.1002/anie.201802143
- P. Cheng, Q. Miao, J. Li, J. Huang, C. Xie, and K. Pu, Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity, Journal of the American Chemical Society, 141(27), 10581-10584 (2019). https://doi.org/10.1021/jacs.9b02580
- (a) X. Wu, W. Shi, X. Li, and H. Ma, Recognition moieties of small molecular fluorescent probes for bioimaging of enzymes, Accounts of Chemical Research, 52(7), 1892-1904 (2019) https://doi.org/10.1021/acs.accounts.9b00214
- (b) W. Chyan and R. T. Raines, Enzyme-activated fluorogenic probes for live-cell and in vivo imaging, ACS Chemical Biology, 13(7), 1810-1823 (2018). https://doi.org/10.1021/acschembio.8b00371
- W. Li, S. Yin, X. Gong, W. Xu, R. Yang, Y. Wan, L. Yuan, and X. Zhang, Achieving the ratiometric imaging of steroid sulfatase in living cells and tissues with a two-photon fluorescent probe, Chemical Communications, 56(9), 1349-1352 (2020). https://doi.org/10.1039/c9cc08672b
- Y. Wang, F. Yu, X. Luo, M. Li, L. Zhao, and F. Yu, Visualization of carboxylesterase 2 with a near-infrared two-photon fluorescent probe and potential evaluation of its anticancer drug effects in an orthotopic colon carcinoma mice model, Chemical Communications (2020).
- B. Valeur and M. N. Berberan-Santos, A brief history of fluorescence and phosphorescence before the emergence of quantum theory, J. Chem. Educ., 88(6), 731-738 (2011). https://doi.org/10.1021/ed100182h
- Q. Zhao, F. Li, and C. Huang, Phosphorescent chemosensors based on heavy-metal complexes, Chemical Society Reviews, 39(8), 3007-3030 (2010). https://doi.org/10.1039/b915340c
- L. Xiong, L. Yang, S. Luo, Y. Huang, and Z. Lu, Highly sensitive iridium(iii) complex-based phosphorescent probe for thiophenol detection, Dalton Transactions, 46(39), 13456-13462 (2017). https://doi.org/10.1039/C7DT02263H
- K. Qiu, H. Huang, B. Liu, Y. Liu, P. Zhang, Y. Chen, L. Ji, and H. Chao, Mitochondria-specific imaging and tracking in living cells with two-photon phosphorescent iridium(iii) complexes, J. Mater. Chem. B, 3(32), 6690-6697 (2015). https://doi.org/10.1039/C5TB01091H
- L. L. Yang, L. L. Li, Y. P. Li, H. M. Zheng, H. X. Song, H. H. Zhang, N. Yang, L. G. Ji, N. N. Ma, and G. J. He, A highly sensitive Ru(ii) complex-based phosphorescent probe for thiophenol detection with aggregation-induced emission characteristics, New J. Chem., 44(4), 1204-1210 (2020). https://doi.org/10.1039/c9nj05093k
- E. Pershagen and K. E. Borbas, Multiplex detection of enzymatic activity with responsive lanthanide-based luminescent probes, Angew. Chem. Int. Edit., 54(6), 1787-1790 (2015). https://doi.org/10.1002/anie.201408560
- M. L. Aulsebrook, S. Biswas, F. M. Leaver, M. R. Grace, B. Graham, A. M. Barrios, and K. L. Tuck, A luminogenic lanthanide-based probe for the highly selective detection of nanomolar sulfide levels in aqueous samples, Chemical Communications, 53(36), 4911-4914 (2017). https://doi.org/10.1039/c7cc01764b
- K. R. Kim, H. J. Kim, and J. I. Hong, Electrogenerated chemiluminescent chemodosimeter based on a cyclometalated iridium(iii) complex for sensitive detection of thiophenol, Analytical Chemistry, 91(2), 1353-1359 (2019). https://doi.org/10.1021/acs.analchem.8b03445
- S. F. Himmelstoss and T. Hirsch, A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging, Methods Appl. Fluores., 7(2) (2019).
- (a) J. Chen, Y. Tang, H. Wang, P. S. Zhang, Y. Li, and J. H. Jiang, Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH, Journal of Colloid and Interface Science, 484, 298-307 (2016) https://doi.org/10.1016/j.jcis.2016.09.009
- (b) J. M. Hu, G. Y. Zhang, Z. S. Ge, and S. Y. Liu, Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications, Prog. Polym. Sci., 39(6), 1096-1143 (2014) https://doi.org/10.1016/j.progpolymsci.2013.10.006
- (c) H. Wang, P. S. Zhang, J. Chen, Y. Li, M. L. Yu, Y. F. Long, and P. G. Yi, Polymer nanoparticle-based ratiometric fluorescent probe for imaging Hg2+ ions in living cells, Sensor. Actuat. B-Chem., 242, 818-824 (2017). https://doi.org/10.1016/j.snb.2016.09.177
- Y. Y. Liang, J. Zhang, H. Cui, Z. S. Shao, C. Cheng, Y. B. Wang, and H. S. Wang, Fluorescence resonance energy transfer (FRET)-based nanoarchitecture for monitoring deubiquitinating enzyme activity, Chemical Communications, 56(21), 3183-3186 (2020). https://doi.org/10.1039/c9cc09808a
- P. S. Zhang, H. Wang, Y. X. Hong, M. L. Yu, R. J. Zeng, Y. F. Long, J. Chen, Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe, Biosensors & Bioelectronics, 99, 318-324 (2018). https://doi.org/10.1016/j.bios.2017.08.001
- J. Ding, H. Y. Li, Y. J. Xie, Q. Peng, Q. Q. Li, and Z. Li, Reaction-based conjugated polymer fluorescent probe for mercury(II): Good sensing performance with "turn-on" signal output, Polym. Chem. UK, 8(14), 2221-2226 (2017). https://doi.org/10.1039/C7PY00035A
- (a) H. R. Chandan, J. D. Schiffman, and R. G. Balakrishna, Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications, Sensor Actuat B-Chem., 258, 1191-1214 (2018) https://doi.org/10.1016/j.snb.2017.11.189
- (b) N. Erathodiyil and J. Y. Ying, Functionalization of inorganic nanoparticles for bioimaging applications, Accounts of Chemical Research, 44(10), 925-935 (2011) https://doi.org/10.1021/ar2000327
- (c) S. M. Ng, M. Koneswaran, and R. Narayanaswamy, A review on fluorescent inorganic nanoparticles for optical sensing applications, Rsc. Adv., 6(26), 21624-21661 (2016). https://doi.org/10.1039/c5ra24987b
- Z. Wang, X. H. Li, Y. C. Song, L. H. Li, W. Shi, and H. M. Ma, An upconversion luminescence nanoprobe for the ultrasensitive detection of hyaluronidase, Analytical Chemistry, 87(11), 5816-5823 (2015). https://doi.org/10.1021/acs.analchem.5b01131
- R. Zhang, L. E. Liang, Q. T. Meng, J. B. Zhao, H. T. Ta, L. Li, Z. Q. Zhang, Y. Sultanbawa, and Z. P. Xu, Responsive upconversion nanoprobe for background-free hypochlorous acid detection and bioimaging, Small, 15(2), 1803712 (2019). https://doi.org/10.1002/smll.201803712
- J. L. Wang and J. J. Qiu, A review of carbon dots in biological applications, J. Mater. Sci., 51(10), 4728-4738 (2016). https://doi.org/10.1007/s10853-016-9797-7
- J. F. Shangguan, D. G. He, X. X. He, K. M. Wang, F. Z. Xu, J. Q. Liu, J. L. Tang, X. Yang, and J. Huang, Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing, Analytical Chemistry, 88(15), 7837-7843 (2016). https://doi.org/10.1021/acs.analchem.6b01932
- Y. Huang, N. He, Q. Kang, D. Z. Shen, X. Y. Wang, Y. Q. Wang, and L. X. Chen, A carbon dot-based fluorescent nanoprobe for the associated detection of iron ions and the determination of the fluctuation of ascorbic acid induced by hypoxia in cells and in vivo, The Analyst, 144(22), 6609-6616 (2019). https://doi.org/10.1039/c9an01694e
- L. Wu, I. C. Wu, C. C. DuFort, M. A. Carlson, X. Wu, L. Chen, C. T. Kuo, Y. L. Qin, J. B. Yu, S. R. Hingorani, and D. T. Chiu, Photostable ratiometric Pdot probe for in vitro and in vivo imaging of hypochlorous acid, Journal of the American Chemical Society, 139(20), 6911-6918 (2017). https://doi.org/10.1021/jacs.7b01545
- L. P. Cai, L. Y. Deng, X. Y. Huang, and J. C. Ren, Catalytic chemiluminescence polymer dots for ultrasensitive in vivo imaging of intrinsic reactive oxygen species in micem, Analytical Chemistry, 90(11), 6929-6935 (2018). https://doi.org/10.1021/acs.analchem.8b01188