Recent Development of Luminescent Chemosensors

다양한 타겟 분석을 위한 화학센서 연구 동향

  • Yoon, Hey Young (Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Hong, Kyung Tae (Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST)) ;
  • An, Seo Jeong (Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Jun-Seok (Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST))
  • 윤혜영 (한국과학기술연구원 분자인식연구센터) ;
  • 홍경태 (KIST School UST 생물화학과) ;
  • 안서정 (한국과학기술연구원 분자인식연구센터) ;
  • 이준석 (한국과학기술연구원 분자인식연구센터)
  • Published : 2020.06.30

Abstract

다양한 분석물을 탐지하기 위해 타겟 특이적이며 높은 안정성과 효율을 지닌 화학센서 개발은 화학자들의 숙원이다. 그들의 노력으로 지난 수십 년간 많은 센서들이 개발되었으며 화학, 생물학, 약물학, 생리학, 환경 화학 등 여러 분야에서 응용이 되고 있다. 본고에서는 화학센서 개발의 디자인 원리와 발광 메커니즘(ICT, FRET, PeT, AIE)에 대해 알아보고 최근 개발된 유기·무기분자 기반 탐침과 나노물질 및 고분자를 이용한 센서 동향에 대해 다루고자 한다. 나아가 여전히 존재하는 개발 과제는 어떠한 것들이 있는지 짚어보고, 앞으로 화학센서 개발이 나아갈 방향에 대해 예상해보고자 한다.

Keywords

References

  1. (a) J. Wu, B. Kwon, W. Liu, E. V. Anslyn, P. Wang, and J. S. Kim, Chromogenic/fluorogenic ensemble chemosensing systems, Chemical Reviews, 115(15), 7893-7943, (2015) https://doi.org/10.1021/cr500553d
  2. (b) T. L. Mako, J. M. Racicot, and M. Levine, Supramolecular luminescent sensors, Chemical Reviews, 119(1), 322-477 (2019). https://doi.org/10.1021/acs.chemrev.8b00260
  3. S. Kolemen and E. U. Akkaya, Reaction-based BODIPY probes for selective bio-imaging, Coordin. Chem. Rev., 354, 121-134 (2018). https://doi.org/10.1016/j.ccr.2017.06.021
  4. A. P. de Silva, H. Q. Gunaratne, T. Gunnlaugsson, A. J. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice, Signaling recognition events with fluorescent sensors and switches, Chemical Reviews, 97(5), 1515-1566 (1997). https://doi.org/10.1021/cr960386p
  5. Y. Hong, J. W. Lam, and B. Z. Tang, Aggregation-induced emission: Phenomenon, mechanism and applications, Chemical Communications, (29), 4332-4353 (2009). https://doi.org/10.1039/b904665h
  6. D. Maity, M. Li, M. Ehlers, A. Gigante, and C. Schmuck, Correction: A metal-free fluorescence turn-on molecular probe for detection of nucleoside triphosphates, Chemical Communications, 53(93), 12588 (2017). https://doi.org/10.1039/C7CC90423A
  7. A. F. Sierra, D. Hernandez-Alonso, M. A. Romero, J. A. Gonzalez-Delgado, U. Pischel, and P. Ballester, Optical supramolecular sensing of creatinine, Journal of the American Chemical Society, 142(9), 4276-4284 (2020). https://doi.org/10.1021/jacs.9b12071
  8. J. J. Hu, N. K. Wong, S. Ye, X. Chen, M. Y. Lu, A. Q. Zhao, Y. Guo, A. C. Ma, A. Y. Leung, J. Shen, and D. Yang, Fluorescent probe HKSOX-1 for imaging and detection of endogenous superoxide in live cells and in vivo, Journal of the American Chemical Society, 137(21), 6837-6843 (2015). https://doi.org/10.1021/jacs.5b01881
  9. H. Li, X. Li, W. Shi, Y. Xu, and H. Ma, Rationally designed fluorescence (.) OH probe with high sensitivity and selectivity for monitoring the generation of (.) OH in iron autoxidation without addition of H2 O2, Angewandte Chemie, 57(39), 12830-12834 (2018). https://doi.org/10.1002/anie.201808400
  10. H. Li, W. Shi, X. Li, Y. Hu, Y. Fang, and H. Ma, Ferroptosis accompanied by (*)OH generation and cytoplasmic viscosity increase revealed via dual-functional fluorescence probe, Journal of the American Chemical Society, 141(45), 18301-18307 (2019). https://doi.org/10.1021/jacs.9b09722
  11. W. L. Jiang, Y. Li, W. X. Wang, Y. T. Zhao, J. Fei, and C. Y. Li, A hepatocyte-targeting near-infrared ratiometric fluorescent probe for monitoring peroxynitrite during drug-induced hepatotoxicity and its remediation, Chemical Communications, 55(95), 14307-14310 (2019). https://doi.org/10.1039/c9cc07017f
  12. W. Chen, A. Pacheco, Y. Takano, J. J. Day, K. Hanaoka, M. Xian, A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals, Angewandte Chemie, 55(34), 9993-9996 (2016). https://doi.org/10.1002/anie.201604892
  13. K. J. Bruemmer, O. Green, T. A. Su, D. Shabat, and C. J. Chang, Chemiluminescent probes for activity-based sensing of formaldehyde released from folate degradation in living mice, Angewandte Chemie, 57(25), 7508-7512 (2018). https://doi.org/10.1002/anie.201802143
  14. P. Cheng, Q. Miao, J. Li, J. Huang, C. Xie, and K. Pu, Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity, Journal of the American Chemical Society, 141(27), 10581-10584 (2019). https://doi.org/10.1021/jacs.9b02580
  15. (a) X. Wu, W. Shi, X. Li, and H. Ma, Recognition moieties of small molecular fluorescent probes for bioimaging of enzymes, Accounts of Chemical Research, 52(7), 1892-1904 (2019) https://doi.org/10.1021/acs.accounts.9b00214
  16. (b) W. Chyan and R. T. Raines, Enzyme-activated fluorogenic probes for live-cell and in vivo imaging, ACS Chemical Biology, 13(7), 1810-1823 (2018). https://doi.org/10.1021/acschembio.8b00371
  17. W. Li, S. Yin, X. Gong, W. Xu, R. Yang, Y. Wan, L. Yuan, and X. Zhang, Achieving the ratiometric imaging of steroid sulfatase in living cells and tissues with a two-photon fluorescent probe, Chemical Communications, 56(9), 1349-1352 (2020). https://doi.org/10.1039/c9cc08672b
  18. Y. Wang, F. Yu, X. Luo, M. Li, L. Zhao, and F. Yu, Visualization of carboxylesterase 2 with a near-infrared two-photon fluorescent probe and potential evaluation of its anticancer drug effects in an orthotopic colon carcinoma mice model, Chemical Communications (2020).
  19. B. Valeur and M. N. Berberan-Santos, A brief history of fluorescence and phosphorescence before the emergence of quantum theory, J. Chem. Educ., 88(6), 731-738 (2011). https://doi.org/10.1021/ed100182h
  20. Q. Zhao, F. Li, and C. Huang, Phosphorescent chemosensors based on heavy-metal complexes, Chemical Society Reviews, 39(8), 3007-3030 (2010). https://doi.org/10.1039/b915340c
  21. L. Xiong, L. Yang, S. Luo, Y. Huang, and Z. Lu, Highly sensitive iridium(iii) complex-based phosphorescent probe for thiophenol detection, Dalton Transactions, 46(39), 13456-13462 (2017). https://doi.org/10.1039/C7DT02263H
  22. K. Qiu, H. Huang, B. Liu, Y. Liu, P. Zhang, Y. Chen, L. Ji, and H. Chao, Mitochondria-specific imaging and tracking in living cells with two-photon phosphorescent iridium(iii) complexes, J. Mater. Chem. B, 3(32), 6690-6697 (2015). https://doi.org/10.1039/C5TB01091H
  23. L. L. Yang, L. L. Li, Y. P. Li, H. M. Zheng, H. X. Song, H. H. Zhang, N. Yang, L. G. Ji, N. N. Ma, and G. J. He, A highly sensitive Ru(ii) complex-based phosphorescent probe for thiophenol detection with aggregation-induced emission characteristics, New J. Chem., 44(4), 1204-1210 (2020). https://doi.org/10.1039/c9nj05093k
  24. E. Pershagen and K. E. Borbas, Multiplex detection of enzymatic activity with responsive lanthanide-based luminescent probes, Angew. Chem. Int. Edit., 54(6), 1787-1790 (2015). https://doi.org/10.1002/anie.201408560
  25. M. L. Aulsebrook, S. Biswas, F. M. Leaver, M. R. Grace, B. Graham, A. M. Barrios, and K. L. Tuck, A luminogenic lanthanide-based probe for the highly selective detection of nanomolar sulfide levels in aqueous samples, Chemical Communications, 53(36), 4911-4914 (2017). https://doi.org/10.1039/c7cc01764b
  26. K. R. Kim, H. J. Kim, and J. I. Hong, Electrogenerated chemiluminescent chemodosimeter based on a cyclometalated iridium(iii) complex for sensitive detection of thiophenol, Analytical Chemistry, 91(2), 1353-1359 (2019). https://doi.org/10.1021/acs.analchem.8b03445
  27. S. F. Himmelstoss and T. Hirsch, A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging, Methods Appl. Fluores., 7(2) (2019).
  28. (a) J. Chen, Y. Tang, H. Wang, P. S. Zhang, Y. Li, and J. H. Jiang, Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH, Journal of Colloid and Interface Science, 484, 298-307 (2016) https://doi.org/10.1016/j.jcis.2016.09.009
  29. (b) J. M. Hu, G. Y. Zhang, Z. S. Ge, and S. Y. Liu, Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications, Prog. Polym. Sci., 39(6), 1096-1143 (2014) https://doi.org/10.1016/j.progpolymsci.2013.10.006
  30. (c) H. Wang, P. S. Zhang, J. Chen, Y. Li, M. L. Yu, Y. F. Long, and P. G. Yi, Polymer nanoparticle-based ratiometric fluorescent probe for imaging Hg2+ ions in living cells, Sensor. Actuat. B-Chem., 242, 818-824 (2017). https://doi.org/10.1016/j.snb.2016.09.177
  31. Y. Y. Liang, J. Zhang, H. Cui, Z. S. Shao, C. Cheng, Y. B. Wang, and H. S. Wang, Fluorescence resonance energy transfer (FRET)-based nanoarchitecture for monitoring deubiquitinating enzyme activity, Chemical Communications, 56(21), 3183-3186 (2020). https://doi.org/10.1039/c9cc09808a
  32. P. S. Zhang, H. Wang, Y. X. Hong, M. L. Yu, R. J. Zeng, Y. F. Long, J. Chen, Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe, Biosensors & Bioelectronics, 99, 318-324 (2018). https://doi.org/10.1016/j.bios.2017.08.001
  33. J. Ding, H. Y. Li, Y. J. Xie, Q. Peng, Q. Q. Li, and Z. Li, Reaction-based conjugated polymer fluorescent probe for mercury(II): Good sensing performance with "turn-on" signal output, Polym. Chem. UK, 8(14), 2221-2226 (2017). https://doi.org/10.1039/C7PY00035A
  34. (a) H. R. Chandan, J. D. Schiffman, and R. G. Balakrishna, Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications, Sensor Actuat B-Chem., 258, 1191-1214 (2018) https://doi.org/10.1016/j.snb.2017.11.189
  35. (b) N. Erathodiyil and J. Y. Ying, Functionalization of inorganic nanoparticles for bioimaging applications, Accounts of Chemical Research, 44(10), 925-935 (2011) https://doi.org/10.1021/ar2000327
  36. (c) S. M. Ng, M. Koneswaran, and R. Narayanaswamy, A review on fluorescent inorganic nanoparticles for optical sensing applications, Rsc. Adv., 6(26), 21624-21661 (2016). https://doi.org/10.1039/c5ra24987b
  37. Z. Wang, X. H. Li, Y. C. Song, L. H. Li, W. Shi, and H. M. Ma, An upconversion luminescence nanoprobe for the ultrasensitive detection of hyaluronidase, Analytical Chemistry, 87(11), 5816-5823 (2015). https://doi.org/10.1021/acs.analchem.5b01131
  38. R. Zhang, L. E. Liang, Q. T. Meng, J. B. Zhao, H. T. Ta, L. Li, Z. Q. Zhang, Y. Sultanbawa, and Z. P. Xu, Responsive upconversion nanoprobe for background-free hypochlorous acid detection and bioimaging, Small, 15(2), 1803712 (2019). https://doi.org/10.1002/smll.201803712
  39. J. L. Wang and J. J. Qiu, A review of carbon dots in biological applications, J. Mater. Sci., 51(10), 4728-4738 (2016). https://doi.org/10.1007/s10853-016-9797-7
  40. J. F. Shangguan, D. G. He, X. X. He, K. M. Wang, F. Z. Xu, J. Q. Liu, J. L. Tang, X. Yang, and J. Huang, Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing, Analytical Chemistry, 88(15), 7837-7843 (2016). https://doi.org/10.1021/acs.analchem.6b01932
  41. Y. Huang, N. He, Q. Kang, D. Z. Shen, X. Y. Wang, Y. Q. Wang, and L. X. Chen, A carbon dot-based fluorescent nanoprobe for the associated detection of iron ions and the determination of the fluctuation of ascorbic acid induced by hypoxia in cells and in vivo, The Analyst, 144(22), 6609-6616 (2019). https://doi.org/10.1039/c9an01694e
  42. L. Wu, I. C. Wu, C. C. DuFort, M. A. Carlson, X. Wu, L. Chen, C. T. Kuo, Y. L. Qin, J. B. Yu, S. R. Hingorani, and D. T. Chiu, Photostable ratiometric Pdot probe for in vitro and in vivo imaging of hypochlorous acid, Journal of the American Chemical Society, 139(20), 6911-6918 (2017). https://doi.org/10.1021/jacs.7b01545
  43. L. P. Cai, L. Y. Deng, X. Y. Huang, and J. C. Ren, Catalytic chemiluminescence polymer dots for ultrasensitive in vivo imaging of intrinsic reactive oxygen species in micem, Analytical Chemistry, 90(11), 6929-6935 (2018). https://doi.org/10.1021/acs.analchem.8b01188