Trends and Prospects of Adsorption Technology for Indoor Carbon Dioxide Reduction

실내 이산화탄소 저감을 위한 흡착 기술의 동향 및 전망

  • Kang, Hyerin (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Lee, Ye Hwan (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Eom, Hanki (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 강혜린 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이예환 (경기대학교 일반대학원 환경에너지공학과) ;
  • 엄한기 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Published : 2020.08.31

Abstract

최근 실내 공기질(IAQ; indoor air quality)을 악화시키는 물질 중 하나인 이산화탄소 저감 연구가 다수 진행되고 있다. 현재 이산화탄소를 저감하는 방법에는 흡착법, 흡수법, 막분리법 등이 있다. 그 중 흡수법은 액체 상태의 흡수제를 분사하는 공정 특성상 실내에 적용하기 어렵고 2차 오염물 또는 폐수가 발생할 수 있다. 또한, 막분리법은 이산화탄소 분리를 위한 응집 및 침전과 같은 전처리 과정이 필요하므로 실내 이산화탄소 저감에 적합하지 않다. 반면, 흡착법은 비교적 저렴하고 운영이 간단하여 적용 사례가 증가하였으며, 유동 인구가 많고 환기가 어려운 지하철, 버스 등의 대중교통 차량 내부 및 교실, 사무실, 공공시설에서 배출되는 실내 이산화탄소를 제어할 수 있다는 장점이 있어 가장 적합한 해결책으로 알려져 있다. 흡착 공정에 사용되는 대표적인 흡착제 종류에는 활성탄, 제올라이트, 알루미나 등이 있으며, 이 흡착제들을 개질 및 성형하여 흡착제의 성능 및 기계적 강도를 증진시키는 고도화 연구가 활발히 수행되고 있다. 이처럼 적용 대상 내 설치 및 교체가 용이하도록 하는 흡착제 제조 기술 개발이 필요한 실정이며, 흡착제를 상용화 수준까지 발전시킴으로써 강화된 실내 공기질 규제 기준에 대한 대응 및 삶의 질 향상이 기대된다.

Keywords

References

  1. S.-H. Lee and S. S. Kim, Present trend and prospect of catalyst technology at room temperature for controlling indoor air quality (IAQ), KIC News, 19, 1-11 (2016).
  2. Y. Cho, J.-Y. Lee, S.-B. Kwon, D.-S. Park, J.-S. Choi, and J.-Y. Lee, Adsorption and desorption characteristics of carbon dioxide at low concentration on zeolite 5A and 13X, J. Korean Soc. Atmos., 27, 191-200 (2011). https://doi.org/10.5572/KOSAE.2011.27.2.191
  3. E. M. Mohamed, Indoor air quality control in case of scheduled or intermittent occupancy based building: Development of a scale model, Build. Environ., 44, 1356-1361 (2009). https://doi.org/10.1016/j.buildenv.2008.06.003
  4. Andersen, Before the big bang of indoor climate research, Indoor Air, 17-22 (2008).
  5. C. M. Lee and Y. S. Kim, Analysis of research trend for indoor air pollutants and health risk assessment in public facilities, J. Korean Soc. Indoor Environ., 1, 39-60 (2004).
  6. J. Y. Sohn, Thermal environment and indoor air quality, Journal of the Korean Society of Living Environmental System, 1, 171-180 (1994).
  7. G. N. Bae and J. H. Ji, Management policy and control technology for indoor air quality in Korea, J. Korean Soc. Atmos., 29, 378-389 (2013). https://doi.org/10.5572/KOSAE.2013.29.4.378
  8. 김기연, 조만수, 김태윤, 실내공기질 관리 실태 및 규제강화 방안 연구; 라돈을 중심으로, 안전보건공단, 10-13 (2016).
  9. K. J. Moon, J. S. Han, B. J. Kong, M. D. Lee, and I. R. Jung, Characteristics of chemical species in gaseous and aerosol phase measured at Gosan, Korea During ABC - EAREX2005, J. Korean Soc. Atmos., 21, 675-687 (2005).
  10. S. Lee, H.-M. Chung, S. J. Park, J. H. Kim, B.-R. Lee, Y.-L. Joo, O. S. Kwon, and W. H. Jheong, Identification and phylogenetic analysis of culturable bacteria in the bioareosol from several environments, Microbiol. Biotechnol. Lett., 43, 142-149 (2015). https://doi.org/10.4014/mbl.1503.03008
  11. J.-J. Yee, S.-K. Kim, and S.-Y. Choi, A field survey on the indoor air quality of newly built schools in Busan, Journal of the Architectural Institute of Korea Planning & Design, 21, 175-182 (2005).
  12. Y.-J. Chung, Production of carbon monoxide and carbon dioxide gases in the combustion tests, Fire Sci. Eng., 5, 7-13 (2015). https://doi.org/10.7731/KIFSE.2015.29.5.007
  13. 김동영, 최민애, 윤보미, Amendment of indoor air quality(IAQ) standard in Gyeonggi-Do, Gyeonggi Research Institute, 4, 1-110 (2019).
  14. C. Jeong, H. Song, B. Hong, and C. Choi, A study of carbon dioxide reduction through the liquid accelerated carbonation using coal ash, J. Korean Society for Environmental Technology, 19, 1-9 (2018). https://doi.org/10.26511/jkset.19.1.1
  15. J. E. Shin, S. H. Han, S. Y. Ha, and H. B. Park, The state of the art of membrane technologies for carbon dioxide separation, KIC News, 21, 1-15 (2018).
  16. Y. H. Lee, D. H. Han, S. M. Lee, H. K. Eom, and S. S. Kim, A study on the cation extraction and separation in cement industrial By - products for applications to the carbonation process, Appl. Chem. Eng., 30, 34-38 (2019). https://doi.org/10.14478/ACE.2018.1098
  17. Y. H. Lee, S. H. Lee, I.-H. Hwang, S.-Y. Choi, S. M. Lee, and S. S. Kim, A study on the calcium ion extraction for PCC production, Appl. Chem. Eng., 29, 43-48 (2018). https://doi.org/10.14478/ACE.2017.1104
  18. 전학제, 촉매개론, 4th ed, 15-53, 한림원, Korea (2002).
  19. M. S. Cho, H. J. Chae, S. C. Lee, S. B. Jo, T. Y. Kim, C. H. Lee, J.-I. Baek, and J. C. Kim, Deactivation causes of dry sorbents for post-combustion CO2 capture, Korean J. Chem. Eng., 57, 253-258 (2019).
  20. S.-H. Choi, J.-K. You, K.-T. Park, I.-H. Baek, and S.-J. Park, Carbon dioxide absorption characteristics according to amine mixtures with different order, Journal of the Korea Academia-Industrial, 14, 4635-4642 (2013).
  21. I. D. Choi, J. S. Lee, J. W. Lee, and Y. T. Kang, CO absorption/regeneration performance evaluation by using SiO nano fluids, The Society of Air-Conditioning and Refrigerating Engineering of Korea, 11, 363-366 (2012).
  22. A. A. Olajire, CO2 capture and separation technologies for end-of-pipe applications - A review, Energy, 35, 2610-2628 (2010). https://doi.org/10.1016/j.energy.2010.02.030
  23. B. Seo, J.-H. Kim, H. Ahn, B.-J. Chang, and K.-H. Lee, The state of the art of membrane technology for separation of carbon dioxide from flue gas, KIC News, 14, 1-13 (2011).
  24. C. H. Park, J. P. Jung, J. H. Lee, and J. H. Kim, Enhancement of CO2 permeance by incorporating CaCO3 in mixed matrix membranes, Membrane Journal, 28, 55-61 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.1.55
  25. F. Rouquerol, J. Rouquerol, K. S. W. Sing, P. Llewellyn, and G. Maurin, Adsorption by powders and porous solids: Principles, Methodology and Applications, Academic Press, San Diego (1998).
  26. 조강희, 고성능 국산 흡착제 개발: 소재 원천 기술 확보와 상용화를 위한 노력, News & Information for Chemical Engineers, 35, 421-428 (2017).
  27. Y. Tatsuya, K. Masahiro, O. Wentaro, and O. Yoshisad, Adsorption of CO2 over univalent cation-exchanged ZSM-5 zeolites, Molecular Physics, 80, 313-324 (1993). https://doi.org/10.1080/00268979300102281
  28. M.-Y. Jung and S.-S. Suh, Effects of operating conditions on adsorption and desorption of benzene in TSA process using activated carbon and zeolite 13X, Appl. Chem. Eng., 29, 594-603 (2018). https://doi.org/10.14478/ACE.2018.1063
  29. J.-W. Choi, S.-B. Kim, and D.-J. Kim, Desorption kinetics of benzene in a sandy soil in the presence of powdered activated carbon, Environ. Monit. Assess., 125, 313-323 (2007). https://doi.org/10.1007/s10661-006-9524-y
  30. J.-G. Jee, M.-K. Park, H.-K. Yoo, K. Lee, and C.-H. Lee, Adsorption and desorption characteristics of air on zeolite 5A, 10X, and 13X fixed beds, Sep. Sci. Technol., 37, 3465-3490 (2007). https://doi.org/10.1081/SS-120014437
  31. Y. Lim and S.-S. Suh, Adsorption characteristics of carbon dioxide on zeolite 13X, Applied Chemistry, 1, 61-64 (2012).
  32. M.-H. Kim, I.-H. Cho, S.-O. Choi, and S.-T. Choo, Zeolites: Their features as pressure swing adsorbents and CO2 adsorption capacity, Int. J. Environ. Sci., 23, 943-962 (2014). https://doi.org/10.5322/JESI.2014.5.943
  33. S. Kulprathipanja, Zeolites in Industrial Separation and Catalysis, Wiley-VCH, Glasgow (2010).
  34. K.-M. Lee and Y.-M. Jo, Adsorption characteristics of chemically modified sorbents for carbon dioxide, J. Korean Ind. Eng. Chem., 19, 533-538 (2008).
  35. S.-K. Kam, K.-H. Kang, and M.-G. Lee, Adsorption characteristics of acetone, benzene and methyl mercaptan according to the surface chemistry and pore structure of activated carbons prepared from waste citrus peel in the fixed bed adsorption reactor, Appl. Chem. Eng., 29, 237-243 (2018). https://doi.org/10.14478/ACE.2017.1131
  36. J. U. Han, D. J. Kim, M. Kang, J. W. Kim, J. M. Kim, and J. E. Yie, Study of CO2 adsorption characteristics on acid treated and LiOH impregnated activated carbons, J. Ind. Eng. Chem., 16, 312-316 (2005).
  37. T. Ahmad, J. Park, S. Choi, and S.-S. Lee, Characteristics of carbon dioxide adsorption with the physical property of activated carbon, Clean Technol., 24, 287-292 (2018). https://doi.org/10.7464/KSCT.2018.24.4.287
  38. Y.-M. Jo, H.-E. Hong, and A. A. Adeloudun, Preparation of KOH impregnated AC pellets for selective CO2 capture, J. Odor Indoor Environ., 12, 203-209 (2013).
  39. Y. H. Jang, Y. I. Noh, S. M. Lee, and S. S. Kim, A study on the modification of NH4+ Y-zeolite for improving adsorption/desorption performance of benzene, Clean Technol., 25, 33-39 (2019). https://doi.org/10.7464/KSCT.2019.25.1.033
  40. W.-G. Hong, K.-J. Hwang, G.-W. Jeong, S.-D. Yoon, and W. G. Shim, Adsorption characteristics of carbon dioxide on chitosan/zeolite composites, Appl. Chem. Eng., 31, 179-186 (2020).
  41. 박상언, 김영기, 정은영, 이창근, 조성호, 박영철, Amine-zeolite composites for carbon dioxide absorbing and preparing method for the same, KR Patent 101167855 (2012).
  42. Y. Cho, D.-S. Park, S.-B. Kwon, J. Y. Lee, and Y.-H. Hwang, Study on the removal of carbon dioxide in the subway cabin using zeolite type carbon dioxide adsorbent, Int. J. Railw., 14, 1-5 (2011).
  43. M.-W. Cho, S. Yoon, Y.-K. Park, W. C. Choi, H. Y. Kim, A. Park, and C. W. Lee, Removal of ethylene over KMnO4/Silica-alumina: Effect of synthesis methods and reaction temperatures, J. Korean Ind. Eng. Chem., 20, 407-410 (2009).
  44. C. Chen, W. J. Son, K. S. You, J. W. Ahn, and W. S. Ahn, Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity, Chem. Eng. J., 161, 46-52 (2010). https://doi.org/10.1016/j.cej.2010.04.019
  45. H. S. Hwang, I. Park, I. K. Lee, W. J. Choi, S. I. Lee, and J.-Y. Lee, Synthesis and characterization of carbon dioxide sorbent by using polyethyleneimine impregnated fumed silica particles, Appl. Chem. Eng., 23, 383-387 (2012).
  46. J.-S. Bae, J.-W. Park, J.-H. Kim, J.-G. Lee, Y. Kim, and C. Han, Removal of CO2 from syngas (CO2 and H2) using nanoporous Na2CO3/Al2O3 adsorbents, Korean Chem. Eng., 47, 646-650 (2009).
  47. Y.-H. Cho, S.-S. Kim, J.-G. Na, S.-H. Chung, and J.-G. Kim, Development of a catalyst for carbon dioxide reforming of methane, Theories and Applications of Chem. Eng., 10, 1781-1784 (2004).
  48. 정용철, 금속유기골격체(Metal-Organic Frameworks, MOFs)의 대량 전산 스크리닝에 대한 최신 동향, News & Information for Chemical Engineers, 37, 318-327 (2019).
  49. S.-H. Hwang, D.-W. Kim, D.-W. Jung, and Y.-M. Jo, Impregnation of nitrogen functionalities on activated carbon fiber adsorbents for low-level CO2 capture, J. Korean Soc. Atmos., 32, 176-183 (2016). https://doi.org/10.5572/KOSAE.2016.32.2.176