Introduction of Study on the Airborne wear Particles Generated from Wheel-rail Contacts to Improve the Air Quality of the Subway System

지하철 실내 공기 질 개선을 위한 철도차량 휠-레일 접촉 미세마모입자 발생 연구 소개

  • Lee, HyunWook (Transportation Environmental Research Team, Korea Railroad Research Institute)
  • 이현욱 (한국철도기술연구원 교통환경연구팀)
  • Published : 2020.08.31

Abstract

최근 미세먼지가 사회적 이슈가 됨에 따라 지하철 시스템의 공기 질에도 많은 관심이 쏠리고 있다. 지하철 미세먼지는 지상과 달리 폐쇄적인 환경이라는 특징이 있는데, 이로 인해 발생 및 유입된 미세먼지는 지하철 시스템에 축적된다. 지하철 미세먼지의 대부분을 차지하는 미세마모입자들은 철 성분을 주축으로 다양한 중금속 성분을 포함하므로 인체에 해롭다. 본 기고문에서는 이러한 지하철 미세먼지 및 미세마모입자에 대한 기본 지식과 미세마모입자의 주된 발생원인 휠-레일 접촉 미세먼지발생 연구에 대해 소개하고자 한다. 연구 결과들은 지하철 공기 질 향상을 위해 미세마모입자 발생 저감에 기여할 것으로 기대된다.

Keywords

References

  1. H. Fromme, A. Oddoy, M. Piloty, M. Krause, and T. Lahrz, Polycyclic aromatic hydrocarbon (PAH) and diesel engine emission (EC) inside a car and a sunway train, Sci. Total. Environ., 217, 165-173 (1998). https://doi.org/10.1016/S0048-9697(98)00189-2
  2. C. Johansson and P. A. Johansson, Particulate matter in the underground of Stockholm, Atmos. Environ., 37, 3-9 (2003). https://doi.org/10.1016/S1352-2310(02)00833-6
  3. A. Seaton, J. Cherrie, M. Dennekamp, K. Donalson, F. Hurley, and L. Tran, The London underground: Dust and hazards to health, Occup. Environ. Med., 62, 355-362 (2005). https://doi.org/10.1136/oem.2004.014332
  4. M. Branis, The contribution of ambent sources to particulate pollution in spaces and trains of the Prague underground transport system, Atmos. Environ., 40, 348-356 (2006). https://doi.org/10.1016/j.atmosenv.2005.09.060
  5. G. Ripanucci, M. Grana, L. Vicentini, A. Magrini, and A. Bergam-aschi, Dust in the underground railway tunnels of an Italian town, J. Occup. Environ. Hyg., 3, 16-25 (2006). https://doi.org/10.1080/15459620500444004
  6. I. Salma, T. Weidinger, and W. Maenhaut, Time-resolved mass concentration, composition and sources of aerosol prticles in a metropolitan underground railway station, Atmos. Environ., 41, 8391-8405 (2007). https://doi.org/10.1016/j.atmosenv.2007.06.017
  7. K. Y. Kim, Y. S. Kim, Y. M. Roh, C. M. Lee, and C. N. Kim, Spatial distribution of PM10 and PM2.5 in Seoul Metropolitan subway stations, J. Hazard. Mater., 154, 440-443 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.042
  8. D. Part and K. Ha, Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platform of sunway train in Seoul, Korea, Environ. Int., 34, 629-634 (2008). https://doi.org/10.1016/j.envint.2007.12.007
  9. J. C. Raut, P. Chazette, and A. Fortain, Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris, Atmos. Environ., 43, 860-868 (2009). https://doi.org/10.1016/j.atmosenv.2008.10.038
  10. X. Ye, Z. Lian, C. Jiang, Z. Zhou, and H. Chen, Investigation of indoor environmetal quality in Shanghai metro stations, China, Environ. Monit. Assess., 167, 643-651 (2010). https://doi.org/10.1007/s10661-009-1080-9
  11. W. Kam, K. Cheung, N. Daher, and C. Sioutas, Particulate matter concentrations in underground and ground-level rail systems of the Los Angeles Metro, Atmos. Environ., 45, 1506-1516 (2011). https://doi.org/10.1016/j.atmosenv.2010.12.049
  12. C. Colombi, S. Angius, V. Gianelle, and M. Lazzarini, Particulate matter concentrations physical characteristics and elemental composition in the Milan underground transport system, Atmos. Environ., 70, 166-178 (2013). https://doi.org/10.1016/j.atmosenv.2013.01.035
  13. S. Pan, L. Fan, J. Liu, J. Xie, Y. Sun, N. Cui, L. Zhang, and B. Zheng, A review of the piston effect in subway stations, Adv. Mech. Eng., 2013, 950205 (2013).
  14. S. Abbasi, Towards Elimination of Airborne Particles from Rail Traffic, Ph.D. Disseration, Royal Institute of Technology, Stockholm, Sweden (2013).
  15. A. T. Zimmer and A. D. Maynard, Investigation of the aerosols produced by a high-speed, hand-held grinder using various substrates, Ann. Occup. Hyg., 46, 663-672 (2002). https://doi.org/10.1093/annhyg/mef089
  16. H. G. Namgung, J. B. Kim, S. H. Woo, S. Park, M. Kim, M. S. Kim, G. N. Bae, D. Park, and S. B. Kwon, Generation of nanoparticles from friction between railway brake disks and pads, Environ. Sci. Technol., 50, 3453-3461 (2016). https://doi.org/10.1021/acs.est.5b06252
  17. F. D. Fischeer, W. Daves, and E. A. Werner, On the temperature in the wheel-rail contact, Fatig. Fract. Eng. Mat. Struct., 26, 999-1006 (2003). https://doi.org/10.1046/j.1460-2695.2003.00700.x
  18. Y. Lee, Y. C. Lee, T. Kim, J. S. Choi, and D. Park, Source and characteristics of particulate matter in subway tunnel in Seoul, Korea, Int. J. Environ. Public. Health, 15, 2534 (2018). https://doi.org/10.3390/ijerph15112534
  19. P. Aarnio, T. Yli-Tuomi, A. Kousa, T. Makela, A. Hirsikko, K. Hameri, M. Raisanen, R. Hillamo, T. Koskentalo, and M. Jantunen, The concentrations and composition of and wxposure to fine particles (Pm2.5) in the Helsinki subway system, Atmos. Environ., 39, 5059-5066 (2005). https://doi.org/10.1016/j.atmosenv.2005.05.012
  20. A. Seaton, J. Cherrie, M. Dennekamp, K. Donaldson, J. F. Hurley, and C. L. Tran, The London underground: Dust and hazards to health, Occup. Environ. Med., 62, 355-362 (2005). https://doi.org/10.1136/oem.2004.014332
  21. S. N. Chillrud, D. Epstein, J. M. Ross, S. N. Sax, D. Pederson, J. D. Spengler, and P. L. Kinney, Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New Yok city's subway system, Environ. Sci. Technol., 38, 732-737 (2004). https://doi.org/10.1021/es034734y
  22. T. Moreno, V. Martins, X. Querol, T. Jones, K. BeruBe, M.C. Minguillon, F. Amato, M. Capdevila, E. de Miguel, and S. Centelles et al., A new look at inhalable metalliferous airbrone particles on rail subway platforms, Sci. Total. Environ., 505, 367-375 (2015). https://doi.org/10.1016/j.scitotenv.2014.10.013
  23. I. B. Tager, Ch. 24 Health Effects of Aerosols: Mechanisms and Epidemiology, Eds L. S. Ruzer, Aerosols handbok: Measurement, Dosimetry and Health Effects, CRC (2012).
  24. C. Bigert, M. Alderling, M. Svartengren, N. Plato, U. de Faire, and P. Gustavsson, Blood markers of inflammation and coagulation and exposure to airborne particles in employees in the Stockholm underground, Occup. Environ. Med., 65, 655-658 (2008). https://doi.org/10.1136/oem.2007.038273
  25. H. L. Karlsson, L. Nilsson, and L. Moller, Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lungs, Chem. Res. Toxicol., 18, 19-23 (2006). https://doi.org/10.1021/tx049723c
  26. R. Bachoual, J. Bockowski, D. Goven, N. Amara, L. Tabet, D. On, V. Lecon-Malas, M. Aubier, and S. Lanone, Biological effects of particles from the Paris subway system, Chem. Res. Toxicol., 20, 1426-1433 (2007). https://doi.org/10.1021/tx700093j
  27. Y. Lee, K. Choi, W. Jung, M. E. Versoza, M. L. M. Barabad, T. Kim, and D. Park, Generation characteristics of nanoparticles emitted from subways in operation, Aerosol. Air. Qual. Res., 18, 2230-2239 (2018). https://doi.org/10.4209/aaqr.2017.11.0439
  28. S. Abbasi, J. Wahlstrom, L. Olander, C. Larsson, U. Olofsson, and U. Sellgren, A study of airborne wear particles generated from organic railway brake pads and brake discs, Wear, 273, 93-99 (2011). https://doi.org/10.1016/j.wear.2011.04.013
  29. H. Lee, A comparison of longitudinal adhesion models and identification of the dominant adhesion parameter, Veh. Syst. Dyn., 58, 590-603 (2020). https://doi.org/10.1080/00423114.2019.1592204
  30. H. Lee, H. G. Namgung, and S. B. Kwon, Effect of train velocity on the amount of airborne wear particles generated from wheel-rail contacts, Wear, 414-415, 296-302 (2018). https://doi.org/10.1016/j.wear.2018.08.023
  31. H. Lee, Generation of airborne wear particles from wheel-rail contact during rolling/sliding and pure sliding contact, Wear, 426-427, 1797-1806 (2019). https://doi.org/10.1016/j.wear.2018.12.093
  32. H. Lee, Generation characteristics of the airborne wear particles emitted from the wheel-rail contact for various train velocities and their generation relation with the train velocity, Atmos. Environ. X., 5, 100068 (2020).
  33. H. Lee, Generation of airborne wear particles from the wheel-rail contact under wet conditions using a twin-disk rig, Wear, 448-449, 203236 (2020). https://doi.org/10.1016/j.wear.2020.203236