Effect of Solubility Parameter of Solvent Additives on the Self-Assembly Behavior of Conjugated Polymers

용매 첨가제의 용해도 계수가 공액고분자의 자기조립 거동에 미치는 영향

  • Kwon, Eun Hye (Department of Energy and Chemical Engineering, Incheon National University, Organic Optoelectronics Laboratory) ;
  • Lee, Jeong Ik (Department of Energy and Chemical Engineering, Incheon National University, Organic Optoelectronics Laboratory) ;
  • Park, So Young (Department of Energy and Chemical Engineering, Incheon National University, Organic Optoelectronics Laboratory) ;
  • Hahm, Yea Eun (Department of Energy and Chemical Engineering, Incheon National University, Organic Optoelectronics Laboratory) ;
  • Park, Yeong Don (Department of Energy and Chemical Engineering, Incheon National University, Organic Optoelectronics Laboratory)
  • 권은혜 (인천대학교 에너지화학공학과 유기광전자연구실) ;
  • 이정익 (인천대학교 에너지화학공학과 유기광전자연구실) ;
  • 박소영 (인천대학교 에너지화학공학과 유기광전자연구실) ;
  • 함예은 (인천대학교 에너지화학공학과 유기광전자연구실) ;
  • 박영돈 (인천대학교 에너지화학공학과 유기광전자연구실)
  • Published : 2020.10.31

Abstract

유기전자소자는 용액공정을 통한 대량생산이 가능하기 때문에 기존 무기전자소자에 비해 제조비용이 저렴하고 대면적 생산이 가능하며, 유기분자의 본연 특징으로 인해 유연하고 가벼운 소자를 구현할 수 있다. 그러나 무기 반도체에 비하여 현저히 낮은 전하이동도 특성은 유기전자소자의 상용화에 걸림돌이 되고 있다. 따라서 공액고분자의 결정화도, 모폴로지, 분자배향 최적화를 통한 자기조립 박막 제조는 전하이동을 원활히 하기 때문에 유기전자소자의 개발에 필수적이다. 본 기고에서는 유기전자소자의 활성층으로 사용되는 공액고분자의 자기조립을 유도하기 위한 다양한 특성을 갖는 용매 첨가제의 효과에 대해서 알아보고, 특히 첨가제의 용해도 계수가 공액고분자의 자기조립 거동에 미치는 영향에 대해 자세히 논의하고자 한다.

Keywords

References

  1. S. D. Kang and G. J. Snyder, Charge-transport model for conducting polymers, Nat. Mater., 16, 252-257 (2017). https://doi.org/10.1038/nmat4784
  2. H. E. Katz, Recent advances in semiconductor performance and printing processes for organic transistor-based electronics, Chem. Mater., 16, 4748-4756 (2004). https://doi.org/10.1021/cm049781j
  3. P. H. Chu, N. Kleinhenz, N. Persson, M. McBride, J. L. Hernandez, B. Fu, G. Zhang, and E. Reichmanis, Toward precision control of nanofiber orientation in conjugated polymer thin films: Impact on charge transport, Chem. Mater., 28, 9099-9109 (2016). https://doi.org/10.1021/acs.chemmater.6b04202
  4. C. Xu, P. He, J. Liu, A. Cui, H. Dong, Y. Zhen, W. Chen, and W. Hu, A General method for growing two-dimensional crystals of organic semiconductors by "Solution Epitaxy", Angew. Chem., 128, 9671-9675 (2016). https://doi.org/10.1002/ange.201602781
  5. A. Facchetti, π-conjugated polymers for organic electronics and photovoltaic cell applications, Chem. Mater., 23, 733-758 (2011). https://doi.org/10.1021/cm102419z
  6. J. Kim, T. Hassinen, W. H. Lee, and S. Ko, Fully solution-processed organic thin-film transistors by consecutive roll-to-roll gravure printing, Org. Electron., 42, 361-366 (2017). https://doi.org/10.1016/j.orgel.2016.12.061
  7. Y. D. Park, J. A. Lim, H. S. Lee, and K. Cho, Interface engineering in organic transistors, Mater. Today., 10, 46-54 (2007).
  8. E. H. Kwon, Y. J. Jang, G. W. Kim, M. Kim, and Y. D. Park, Highly crystalline and uniform conjugated polymer thin films by a water-based biphasic dip-coating technique minimizing the use of halogenated solvents for transistor applications, RSC Adv., 9, 6356-6362 (2019). https://doi.org/10.1039/c8ra09231a
  9. S. SuB, T. Sobisch, W. Peukert, D. Lerche, and D. Segets, Determination of hansen parameters for particles: A standardized routine based on analytical centrifugation, Adv. Powder Technol., 29, 1550-1561 (2018). https://doi.org/10.1016/j.apt.2018.03.018
  10. F. MacHui, S. Abbott, D. Waller, M. Koppe, and C. J. Brabec, Determination of solubility parameters for organic semiconductor formulations, Macromol. Chem. Phys., 212, 2159-2165 (2011). https://doi.org/10.1002/macp.201100284
  11. C. M. Hansen, Hansen Solubility Parameters - A User's Handbook, 2nd ed., CRC Press, Boca Raton (2007).
  12. J. A. Emerson, D. T. W. Toolan, J. R. Howse, E. M. Furst, and T. H. Epps, Determination of solvent-polymer and polymer-polymer floryhuggins interaction parameters for poly(3-hexylthiophene) via solvent vapor swelling, Macromolecules., 46, 6533-6540 (2013). https://doi.org/10.1021/ma400597j
  13. Y. D. Park, H. S. Lee, Y. J. Choi, D. Kwak, J. H. Cho, S. Lee, and K. Cho, Solubility-induced ordered polythiophene precursors for high-performance organic thin-film transistors, Adv. Funct. Mater., 19, 1200-1206 (2009). https://doi.org/10.1002/adfm.200801763
  14. K. R. Graham, P. M. Wieruszewski, R. Stalder, M. J. Hartel, J. Mei, F. So, and J. R. Reynolds, Improved performance of molecular bulk-heterojunction photovoltaic cells through predictable selection of solvent additives, Adv. Funct. Mater., 22, 4801-4813 (2012). https://doi.org/10.1002/adfm.201102456
  15. N. Shin, L. J. Richter, A. A. Herzing, R. J. Kline, and D. M. DeLongchamp, Effect of processing additives on the solidification of blade-coated polymer/fullerene blend films via in-situ structure measurements, Adv. Energy Mater., 3, 938-948 (2013). https://doi.org/10.1002/aenm.201201027
  16. J. W. Jeong, G. Jo, S. Choi, Y. A. Kim, H. Yoon, S. W. Ryu, J. Jung, and M. Chang, Solvent additive-assisted anisotropic assembly and enhanced charge transport of π-conjugated polymer thin films, ACS Appl. Mater. Interfaces., 10, 18131-18140 (2018). https://doi.org/10.1021/acsami.8b03221
  17. M. J. Kim, J. Y. Choi, G. An, H. Kim, Y. Kang, J. K. Kim, H. J. Son, J. H. Lee, J. H. Cho, and B. Kim, A new rigid planar low band gap PTTDPP-DT-DTT polymer for organic transistors and performance improvement through the use of a binary solvent system, Dye. Pigment., 126, 138-146 (2016). https://doi.org/10.1016/j.dyepig.2015.11.022
  18. A. De Sio, T. Madena, R. Huber, J. Parisi, S. Neyshtadt, F. Deschler, E. Da Como, S. Esposito, and E. Von Hauff, Solvent additives for tuning the photovoltaic properties of polymer-fullerene solar cells, Sol. Energy Mater. Sol. Cells., 95, 3536-3542 (2011). https://doi.org/10.1016/j.solmat.2011.08.019
  19. G. W. Kim, Y. J. Jang, M. Kim, and Y. D. Park, Floating-non-solvent method for inducing the formation of highly crystalline conjugated polymer nanofibrils in the solution state for high-performance organic transistors, J. Mater. Chem. C, 6, 8353-8359 (2018). https://doi.org/10.1039/c8tc01525b
  20. E. H. Kwon, G. W. Kim, M. Kim, and Y. D. Park, Effect of alcohol polarity on the aggregation and film-forming behaviors of poly(3-hexylthiophene), ACS Appl. Polym. Mater., 2, 2980-2986 (2020). https://doi.org/10.1021/acsapm.0c00448
  21. M. Chang, D. Choi, B. Fu, and E. Reichmanis, Solvent based hydrogen bonding: Impact on poly(3-hexylthiophene) nanoscale morphology and charge transport characteristics, ACS Nano., 7, 5402-5413 (2013). https://doi.org/10.1021/nn401323f
  22. C. Zhang, T. Heumueller, S. Leon, W. Gruber, K. Burlafinger, X. Tang, J. D. Perea, I. Wabra, A. Hirsch, T. Unruh, N. Li, and C. J. Brabec, A top-down strategy identifying molecular phase stabilizers to overcome microstructure instabilities in organic solar cells, Energy Environ. Sci., 12, 1078-1087 (2019). https://doi.org/10.1039/c8ee03780a