High-resolution Patterning of Colloidal Quantum Dots via Non-destructive, Light-driven Ligand Crosslinking

양자점용 가교제를 이용한 고해상도 양자점 광패터닝 기술

  • Yang, Jeehye (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Kang, Moon Sung (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 양지혜 (서강대학교 화공생명공학과) ;
  • 강문성 (서강대학교 화공생명공학과)
  • Published : 2020.12.31

Abstract

최근 우수한 발광 특성을 갖는 양자점을 고해상도 디스플레이의 발광 소재로 도입하고자 하는 노력이 활발하다. 양자점을 활용한 디스플레이의 실현을 위해서는 콜로이드 상태인 다색의 양자점을 고해상도로 패터닝하는 기술의 확립이 필요하다. 본 연구에서는 ethane-1,2-diyl bis(4-azido-2,3,5,6-tetrafluorobenzoate)를 양자점용 가교제로 활용하여 용액공정을 기반으로 형성된 양자점 박막을 고해상도로 패터닝한 기술을 소개하고자 한다. 위 양자점용 가교제의 양 말단에는 아지드 그룹을 포함한 작용기가 존재한다. 아지드 기는 자외선에 의해 광 활성화되어 양자점 표면의 알킬 리간드와 가교 결합을 형성함으로써, 양자점 박막에 화학적 내구성을 부여한다. 본 기술을 기반으로, 적색, 녹색, 청색의 카드뮴 기반 양자점을 고해상도로 패터닝하고 정밀하게 배열하여 인치 당 화소 수 1400 이상의 픽셀 형성에 성공하였다. 또한 가교 반응 후에도 성능 저하가 없는 양자점 박막 및 자발광 양자점 다이오드를 개발하였다.

Keywords

References

  1. L. Brus, Electronic wave functions in semiconductor clusters: Experiment and theory, J. Phys. Chem., 90, 2555-2560 (1986). https://doi.org/10.1021/j100403a003
  2. A. I. Ekimov, A. L. Efros, and A. A. Onushchenko, Quantum size effect in semiconductor microcrystals, Solid State Commun., 56, 921-924 (1985). https://doi.org/10.1016/S0038-1098(85)80025-9
  3. M. A. Hines and P. Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe Nanocrystals, J. Phys. Chem., 100, 468-471 (1996). https://doi.org/10.1021/jp9530562
  4. B. G. Jeong, Y.-S. Park, J. H. Chang, I. Cho, J. K. Kim, H. Kim, K. Char, J. Cho, V. I. Klimov, P. Park, D. C. Lee, and W. K. Bae, Colloidal spherical quantum wells with nearunity photoluminescence quantum yield and suppressed blinking, ACS Nano, 10, 9297-9305 (2016). https://doi.org/10.1021/acsnano.6b03704
  5. F. Zhang, S. Wang, L. Wang, Q. Lin, H. Shen, W. Cao, C. Yang, H. Wang, L. Yu, Z. Du, J. Xue, and L. S. Li, Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets, Nanoscale, 8, 12182-12188 (2016). https://doi.org/10.1039/c6nr02922a
  6. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, White-light-emitting diodes with quantum dot color converters for display backlights, Adv. Mater., 22, 3076-3080 (2010). https://doi.org/10.1002/adma.201000525
  7. J.-Y. Sun, F. T. Rabouw, X.-F. Yang, X.-Y. Huang, X.-P. Jing, S. Ye, and Q.-Y. Zhang, Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X = Cl, Br, and I) zeolite-Y composite phosphors for potential backlight display application, Adv. Funct. Mater., 27, 1704371 (2017). https://doi.org/10.1002/adfm.201704371
  8. C.-F. Lai, Y.-C. Tien, H.-C. Tong, C.-Z. Zhong, and Y.-C. Lee, High-performance quantum dot light-emitting diodes using chip-scale package structures with high reliability and wide color gamut for backlight displays, RSC Adv., 8, 35966-35972 (2018). https://doi.org/10.1039/c8ra07928e
  9. J. Lim, W.K. Bae, J. Kwak, S. Lee, C. Lee, and K. Char, Perspective on synthesis, device structures, and printing processes for quantum dot displays, Opt. Mater. Express, 2, 594-628 (2012). https://doi.org/10.1364/OME.2.000594
  10. P. F. Tian, V. Bulovic, P. E. Burrows, G. Gu, S. R. Forrest, and T. X. Zhou, Precise, scalable shadow mask patterning of vacuum-deposited organic light emitting devices, J. Vac. Sci. Technol. A, 17, 2975-2981 (1999). https://doi.org/10.1116/1.581969
  11. A. G. Shulga, A. Yamamura, K. Tsuzuku, R. M. Dragoman, D. N. Dirin, S. Watanabe, M. V. Kovalenko, J. Takeya, and M. A. Loi, Patterned quantum dot photosensitive FETs for medium frequency optoelectronics, Adv. Mater. Technol., 4, 1900054 (2019). https://doi.org/10.1002/admt.201900054
  12. V. Wood, M. J. Panzer, J. Chen, M. S. Bradley, J. E. Halpert, M. G. Bawendi, and V. Bulovic, Inkjet-printed quantum dot-polymer composites for full-color AC-driven displays, Adv. Mater., 21, 2151-2155 (2009). https://doi.org/10.1002/adma.200803256
  13. B. H. Kim, M. S. Onses, J. B. Lim, S. Nam, N. Oh, H. Kim, K. J. Yu, J. W. Lee, J.-H. Kim, S.-K. Kang, C. H. Lee, J. Lee, J. H. Shin, N. H. Kim, C. Leal, M. Shim, and J. A. Rogers, High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes, Nano Lett., 15, 969-973 (2015). https://doi.org/10.1021/nl503779e
  14. P. Yang, L. Zhang, D. J. Kang, R. Strahl, and T. Kraus, High-resolution inkjet printing of quantum dot light-emitting microdiode arrays, Adv. Opt. Mater., 1901429 (2019). https://doi.org/10.1002/adom.201901429
  15. T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, Full-colour quantum dot displays fabricated by transfer printing, Nat. Photonics, 5, 176 (2011). https://doi.org/10.1038/nphoton.2011.12
  16. M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T.-H. Kim, J. H. Kim, T. Hyeon, and D.-H. Kim, Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing, Nat. Commun., 6, 7149 (2015). https://doi.org/10.1038/ncomms8149
  17. H. Keum, Y. Jiang, J. K. Park, J. C. Flanagan, M. Shim, and S. Kim, Photoresist contact patterning of quantum dot films, ACS Nano, 12, 10024-10031 (2018). https://doi.org/10.1021/acsnano.8b04462
  18. F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water, ACS Nano, 10, 1224-1230 (2016). https://doi.org/10.1021/acsnano.5b06536
  19. F. Palazon, M. Prato, and L. Manna, Writing on nanocrystals: Patterning colloidal inorganic nanocrystal films through irradiation-induced chemical transformations of surface ligands, J. Am. Chem. Soc., 139, 13250-13259 (2017). https://doi.org/10.1021/jacs.7b05888
  20. L. Wang, Y. Zhu, H. Liu, J. Gong, W. Wang, S. Guo, Y. Yu, H. Peng, and Y. Liao, Giant stability enhancement of CsPbX3 nanocrystal films by plasma-induced ligand polymerization, ACS Appl. Mater. Interfaces, 11, 35270-35276 (2019). https://doi.org/10.1021/acsami.9b12591
  21. Y. Wang, I. Fedin, H. Zhang, and D. V. Talapin, Direct optical lithography of functional inorganic nanomaterials, Science, 357, 385-388 (2017). https://doi.org/10.1126/science.aan2958
  22. Y. Wang, J.-A. Pan, H. Wu, and D. V. Talapin, Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials, ACS Nano, 13, 13917-13931 (2019). https://doi.org/10.1021/acsnano.9b05491
  23. H. Cho, J.-A. Pan, H. Wu, X. Lan, I. Coropceanu, Y. Wang, W. Cho, E. A. Hill, J. S. Anderson, and D. V. Talapin, Direct optical patterning of quantum dot light-emitting diodes via in situ ligand exchange, Adv. Mater., 2003805 (2020). https://doi.org/10.1002/adma.202003805
  24. G. W. J. Fleet, R. R. Porter, and J. R. Knowles, Affinity labelling of antibodies with aryl nitrene as reactive group, Nature, 224, 511-512 (1969). https://doi.org/10.1038/224511a0
  25. R. Poe, K. Schnapp, M. J. T. Young, J. Grayzar, and M. S. Platz, Chemistry and kinetics of singlet pentafluorophenylnitrene, J. Am. Chem. Soc., 114, 5054-5067 (1992). https://doi.org/10.1021/ja00039a016
  26. R.-Q. Png, P.-J. Chia, J.-C. Tang, B. Liu, S. Sivaramakrishnan, M. Zhou, S.-H. Khong, H. S. O. Chan, J. H. Burroughes, L.-L. Chua, R. H. Friend, and P. K. H. Ho, High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains, Nat. Mater., 9, 152 (2009). https://doi.org/10.1038/nmat2594
  27. C. Giansante and I. Infante, Surface tranps in colloidal quantum dots: A combined experimental and theoretical perspective, J. Phys. Chem. Lett., 8, 5209-5215 (2017). https://doi.org/10.1021/acs.jpclett.7b02193
  28. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure, Nano Lett., 12, 2362-2366 (2012). https://doi.org/10.1021/nl3003254