DOI QR코드

DOI QR Code

Vortex-induced vibration characteristics of a low-mass-ratio flexible cylinder

  • Quen, Lee Kee (Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia) ;
  • Abu, Aminudin (Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia) ;
  • Kato, Naomi (Department of Naval Architecture and Ocean Engineering, Graduate School of Engineering, Osaka University) ;
  • Muhamad, Pauziah (Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia) ;
  • Siang, Kang Hooi (School of Mechanical Engineering, Universiti Teknologi Malaysia) ;
  • Hee, Lim Meng (Institute of Noise and Vibration, Universiti Teknologi Malaysia) ;
  • Rahman, Mohd Asamudin A (School of Ocean Engineering, Universiti Malaysia Terengganu)
  • 투고 : 2019.07.24
  • 심사 : 2020.04.03
  • 발행 : 2020.09.10

초록

A laboratory experiment is conducted is to investigate the behaviour of a low-mass-ratio and high aspect ratio flexible cylinder under vortex-induced vibration (VIV). A flexible cylinder with aspect ratio of 100 and mass ratio of 1.17 is towed horizontally to generate uniform flow profile. The range of Reynolds number is from 1380 to 13800. Vibration amplitude, in-line and cross-flow frequency response, amplitude trajectory, mean tension variation and hydrodynamic force coefficients are analyzed based on the measurement from strain gauges, load cell and CCD camera. Experimental results indicate that broad-banded lock-in region is found for the cylinder with a small Strouhal number. The frequency switches in the present study indicates the change of the VIV phenomenon. The hydrodynamic force responses provide more understanding on the VIV of a low mass ratio cylinder.

키워드

과제정보

This research was financially supported by Japan International Cooperation Agency under grant (S.K130000.0543.4Y191) and Universiti Teknologi Malaysia research grant (R.K130000.7343.4B362)

참고문헌

  1. Aguirre, J.E. (1978), "Flow Induced, In-line Vibrations of a Circular Cylinder". Ph.D. Dissertation, Imperial College of Science and Technology, London, United Kingdom.
  2. Assi, G.R.S. (2009), "Mechanisms for flow-induced vibration of interfering bluff bodies". Ph.D. Dissertation, Imperial College, London, United Kingdom.
  3. Baarholm, G.S., Larsen, C.M. and Lie, H. (2006), "On fatigue damage accumulation from in-line and cross-flow vortexinduced vibrations on risers", J. Fluids Struct., 22, 109-127. https://doi.org/10.1016/j.jfluidstructs.2005.07.013
  4. Bearman, P.W. (2011), "Circular cylinder wakes and vortexinduced vibrations", J. Fluids Struct., 27, 648-658. https://doi.org/10.1016/j.jfluidstructs.2011.03.021
  5. Blevins, R.D. and Coughran, C.S. (2009), "Experimental Investigation of vortex-induced vibration in one and two dimensions with variable mass, damping, and Reynolds number", J. Fluids Eng., 131, 10, 101202. https://doi.org/10.1115/1.3222904.
  6. Boom, H.J.J. and Walree, F. (1990), "Hydrodynamic aspects of flexible risers", Offshore Technology Conference (OTC), Houston, Texas, May.
  7. Brankovic, M., and Bearman, P. (2006), "Measurements of transverse forces on circular cylinders undergoing vortexinduced vibration", J. Fluids. Struct., 22(6), 829-836. https://doi.org/10.1016/j.jfluidstructs.2006.04.022.
  8. Chaplin, J.R., Bearman, P.W., Huara Huarte, F.J. and Pattenden, R.J. (2005), "Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current", J. Fluids Struct. 21, 3-24. https://doi.org/10.1016/j.jfluidstructs.2005.04.010
  9. Chen, W., Ji, C., Mahbub Alam, M. and Xu, D. (2019), "Flowinduced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow", Wind Struct., 29, 43-53. https://doi.org/10.12989/was.2019.29.1.043.
  10. Currie, I.G. and Turnbull, D.H. (1987), "Streamwise oscillations of cylinders near the critical Reynolds number". J. Fluids Struct., 1, 185-196. https://doi.org/10.1016/S0889-9746(87)90331-8.
  11. Dahl, J.M., Hover, F.S. and Triantafyllou, M.S. (2006), "Twodegree-of-freedom vortex-induced vibrations using a force assisted apparatus", J. Fluids Struct., 22, 807-818. https://doi.org/10.1016/j.jfluidstructs.2006.04.019.
  12. Dahl, J.M., Hover, F.S., Triantafyllou, M.S., Dong, S. and Karniadakis, G.E. (2007), "Resonant vibrations of bluff bodies cause multi-vortex shedding", Physic Rev. Lett., 99, 144503. https://doi.org/10.1103/PhysRevLett.99.144503.
  13. Dahl, J.J.M. (2008), "Vortex-induced vibration of a circular cylinder with combined in-line and cross-flow motion", Ph.D. Dissertation, Massachusetts Institute of Technology, USA.
  14. Dahl, J.M., Hover, F.S., Triantafyllou, M.S. and Oakley, O.H. (2010), "Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds number", J. Fluid Mech., 643, 395-424. https://doi.org/10.1017/S0022112009992060.
  15. Feng, C.C. (1968), "The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders", M.Sc. Dissertation, Department of Mechanical Engineering, The University of British Columbia, Canada.
  16. Gabbai, R.D. and Benaroya, H. (2005), "An overview of modeling and experiments of vortex-induced vibration of circular cylinders", J. Sound Vib., 282, 575-616. https://doi.org/10.1016/j.jsv.2004.04.017.
  17. Gonalves, R.T., Rosetti, G.F., Franzini, G.R., Meneghini, J.R., Fujarra, A.L.C. (2013), "Two-degree-of-freedom vortex-induced vibration of circular cylinders with very low aspect ratio and small mass ratio", J. Fluids Struct., 39, 237-257. https://doi.org/10.1016/j.jfluidstructs.2013.02.004
  18. Govardhan, R. and Williamson, C.H.K. (2000), "Modes of vortex formation and frequency response of a freely vibrating cylinder", J. Fluid Mech., 420, 85-130. https://doi.org/10.1017/S0022112000001233.
  19. Han, Q., Ma, Y., Xu, W., Lu, Y. and Cheng, A. (2017), "Dynamic characteristics of an inclined flexible cylinder undergoing vortex-induced vibrations", J. Sound Vib., 394, 306-320. https://doi.org/10.1016/j.jsv.2017.01.034.
  20. Huera Huarte, F.J. (2006), "Multi-mode vortex-induced vibrations of a flexible circular cylinder", Ph.D. Dissertation, Department of Aeronautics, Imperial College London, United Kingdom.
  21. Huera-Huarte, F.J. and Bearman, P.W. (2009), "Wake structures and vortex-induced vibrations of a long flexible cylinder-Part 2: Drag coefficients and vortex modes", J. Fluids Struct., 25, 991-1006. https://doi.org/10.1016/j.jfluidstructs.2009.03.006
  22. Huera-Huarte, F.J., Bangash, Z.A., Gonzalez, L.M. (2014), "Towing tank experiments on the vortex-induced vibrations of low mass ratio long flexible cylinders", J. Fluids Struct., 48, 81-92. https://doi.org/10.1016/j.jfluidstructs.2014.02.006.
  23. Huse, E., Nielsen, F.G. and Soreide, T. (2002), "Coupling between in-line and transverse VIV response", ASME 21st International Conference on Offshore Mechanics and Arctic Engineering OMAE2002-28618, Oslo, Norway, June.
  24. Jauvtis, N. and Williamson, C.H.K. (2003), "Vortex-induced vibration of a cylinder with two degrees of freedom", J. Fluids Struct., 17, 1035-1042. https://doi.org/10.1016/S0889-9746(03)00051-3.
  25. Jauvtis, N. and Williamson, C.H.K. (2004), "The effect of two degrees of freedom on vortex-induced vibration at low mass and damping", J. Fluid Mech., 509, 23-62. https://doi.org/10.1017/S0022112004008778
  26. Jeong, Y., Park, M. and You, Y. (2016), "Experimental study on wave forces to offshore support structures", Struct. Eng. Mech., Vol. 60, 193-209. https://doi.org/10.12989/sem.2016.60.2.193
  27. Jus, Y., Longatte, E., Chassaing, J.C. and Sagaut, P. (2014), "Low Mass-Damping Vortex-Induced Vibrations of a Single Cylinder at Moderate Reynolds Number", J. Press Vessel Technol., 136(5), 0513051-513057. https://doi.org/10.1115/1.4027659.
  28. Ji, C., Peng, Z., Mahbub Alam, M., Chen, W. and Xu, D. (2018), "vortex-induced vibration of a long flexible cylinder in uniform cross-flow", Wind Struct., 26, 267-277. https://doi.org/10.12989/was.2018.26.5.267
  29. Kang, H.S., Kim, M.H., Aramanadka, S.S.B., Kang, H.Y. and Lee, K.Q. (2017), "Suppression of tension variations in hydropneumatic riser tensioner by using force compensation control", Ocean Syst. Eng., 7, 225-246. https://doi.org/10.12989/ose.2017.7.3.225
  30. Khalak, A. and Williamson, C.H.K. (1997), "Fluid forces and dynamics of a hydroelastic structure with very low mass and damping", J. Fluids Struct., 11, 973-982. https://doi.org/10.1006/jfls.1997.0110
  31. Khalak, A. and Williamson, C.H.K. (1999), "Motions, forces and mode transitions in vortex-induced vibrations at low massdamping", J. Fluids Struct., 13, 813-851. https://doi.org/10.1006/jfls.1999.0236
  32. Kim, D.K., Choi, H.S., Shin, C.S., Liew, M.S., Yu, S.Y. and Park, K.S. (2015), "Fatigue performance of deepwater SCR under short-term VIV considering various S-N curves", Struct. Eng. Mech., 53, 881-896. https://doi.org/10.12989/sem.2015.53.5.881.
  33. Korkischko, I. and Meneghini, J.R. (2010), "Experimental investigation of flow-induced vibration on isolated and tandem circular cylinders fitted with strakes", J. Fluids Struct., 26, 611-625. https://doi.org/10.1016/j.jfluidstructs.2010.03.001
  34. Kuiper, G.L. (2008), "Stability of offshore risers conveying fluid", Ph.D. Dissertation, Delft, Eburon Uitgeverij.
  35. Lee, K.Q., Abu, A. and Muhamad, P. (2013), "Investigation of wide range of flow around circular cylinder using turbulence model", Adv. Mater. Res., 664, 878-883. https://doi.org/10.4028/www.scientific.net/AMR.664.878.
  36. Marcollo, H. and Hinwood, J.B. (2006), "On shear flow single mode lock-in with both cross-flow and in-line lock-in mechanisms", J. Fluids Struct., 22, 197-211. https://doi.org/10.1016/j.jfluidstructs.2005.10.001.
  37. Naomi Kato (1982), "A study on separated flows behind bluff bodies by inviscid vortex models (2nd report)", J. Soc. Naval Architects Japan, 151, 15-22. https://doi.org/10.2534/jjasnaoe1968.1982.15.
  38. Norberg, C. (2001), "Flow around a circular cylinder: Aspects of fluctuating lift", J. Fluids Struct., 15, 459-469. https://doi.org/10.1006/jfls.2000.0367.
  39. Norberg, C. (2003), "Fluctuating lift on a circular cylinder: review and new measurements", J. Fluids Struct., 17, 57-96. https://doi.org/10.1016/S0889-9746(02)00099-3.
  40. Quen, L.K., Abu, A., Kato, N., Muhamad, P., Sahekhaini, A., Abdullah, H. (2014), "Investigation on the effectiveness of helical strakes in suppressing VIV of flexible riser", Appl. Ocean Res., 44, 82-91. https://doi.org/10.1016/j.apor.2013.11.006.
  41. Rahman, M.A, Leggoe, J., Thiagarajan, K., Mohd, M.H. and Paik, J.K. (2016), "Numerical simulations of vortex-induced vibrations on vertical cylindrical structure with different aspect ratios", Ships Offshore Struct., 11(4), 405-423. https://doi.org/10.1080/17445302.2015.1013783.
  42. Roshko, A. (1961), "Experiments on the flow past a circular cylinder at very high Reynolds number", J. Fluid Mech., 10(3), 345-356. http://dx.doi.org/10.1017/S0022112061000950.
  43. Roshko, A. (1993), "Perspectives on bluff body aerodynamics", J. Wind Eng. Industrial Aerodynam., 49, 79-100. https://doi.org/10.1016/0167-6105(93)90007-B.
  44. Sanaati, B. (2012), "An experimental study on the VIV hydrodynamics of pre-tensioned flexible cylinders with single and multiple configurations", Ph.D. Dissertation, Osaka University, Japan.
  45. Sanaati, B. and Kato, N. (2012), "A study on the effects of axial stiffness and pre-tension on VIV dynamics of a flexible cylinder in uniform cross-flow", Appl. Ocean Res., 37, 198-210. https://doi.org/10.1016/j.apor.2012.05.001.
  46. Sanchis, A., Sælevik, G. and Grue, J. (2008), "Two-degree-offreedom vortex-induced vibrations of a spring-mounted rigid cylinder with low mass ratio", J. Fluids Struct., 24, 907-919. https://doi.org/10.1016/j.jfluidstructs.2007.12.008.
  47. Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", J. Fluids Struct., 19, 389-447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005.
  48. Song, L., Fu, S., Dai, S., Zhang, M. and Chen, Y. (2016), "Distribution of drag force coefficient along A flexible riser undergoing VIV in sheared flow", Ocean Eng., 126, 1-11. https://doi.org/10.1016/j.oceaneng.2016.08.022.
  49. Vandiver, J.K. (1983), "Drag coefficients of long flexible cylinders", Offshore Technology Conference, Texas, USA, May.
  50. Vandiver, J.K. (1993), "Dimensionless parameters important to the prediction of vortex-induced vibration of long, flexible cylinders in ocean currents", J. Fluids Struct. 7, 292-308. https://doi.org/10.1006/jfls.1993.1028.
  51. Vandiver, J. K. (1998), "Research challenges in the vortex-induced vibration prediction of marine risers", Offshore Technology Conference (OTC), Houston, USA, May.
  52. Vandiver, J.K., Jaiswal, V. and Jhingran, V. (2009), "Insights on vortex-induced, travelling waves on long risers", J. Fluids Struct. 25, 641-653. https://doi.org/10.1016/j.jfluidstructs.2008.11.005.
  53. Vikestad, K., Vandiver, J.K. and Larsen, C.M. (2000), "Added mass and oscillation frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance", J. Fluids Struct., 14, 1071-1088. https://doi.org/10.1006/jfls.2000.0308.
  54. Williamson, C.H.K. and Roshko, A. (1988), "Vortex formation in the wake of an oscillating cylinder", J. Fluids Struct., 2, 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8.
  55. Williamson, C.H.K. and Govardhan, R. (2008), "A brief review of recent results in vortex-induced vibrations", J. Wind Eng. Industrial Aerodynam., 96, 713-735. https://doi.org/10.1016/j.jweia.2007.06.019
  56. Wu, J., Lie, H., Larsen, CM., Liapis, S. and Baarholm, R. (2016), "Vortex-induced vibration of a flexible cylinder: Interaction of the in-line and cross-flow responses", J. Fluids Struct.63, pp. 238 - 258. https://doi.org/10.1016/j.jfluidstructs.2016.03.001
  57. Xu, J., He, M., Bose, N. (2009), "Vortex modes and vortexinduced vibration of a long, flexible riser", Ocean Eng. 36, 456-467. https://doi.org/10.1016/j.oceaneng.2009.01.010
  58. Xu, W., Qin, W., Gao, X. (2018), "Experimental Study on Streamwise Vortex-Induced Vibration of a Flexible Slender Cylinder", Appl. Sci.s 8, 311. doi:10.3390/app8020311