DOI QR코드

DOI QR Code

Sensing changes in tumor during boron neutron capture therapy using PET with a collimator: Simulation study

  • Yang, Hye Jeong (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea) ;
  • Yoon, Do-Kun (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea) ;
  • Suh, Tae Suk (Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea)
  • 투고 : 2019.12.05
  • 심사 : 2020.02.14
  • 발행 : 2020.09.25

초록

The purpose of this study was to demonstrate the feasibility of sensing changes in a tumor during boron neutron capture therapy (BNCT) using a Monte Carlo simulation tool. In the simulation, an epi-thermal neutron source and a water phantom including boron uptake regions (BURs) were simulated. Moreover, this simulation also included a detector for positron emission tomography (PET) scanning and an adaptively-designed collimator (ADC) for PET. After the PET scanning of the water phantom, including the 511 keV source in the BUR, the ADC was positioned in the PET's gantry. Single prompt gamma rays were collected through the ADC during neutron irradiation. Then, single prompt gamma ray-based tomography images of different sized tumors were acquired by a four-step process. Both the signal-to-noise ratio (SNR) and tumor size were analyzed from each step image. From this analysis, we identified a decreasing trend of both the SNR and signal intensity as the tumor size decreased, which was confirmed in all images. In conclusion, we confirmed the feasibility of sensing changes in a tumor during BNCT using PET and an ADC through Monte Carlo simulation.

키워드

참고문헌

  1. Z. Yong, Z. Song, Y. Zhou, T. Liu, Z. Zhang, Y. Zhao, Y. Chen, C. Jin, X. Chen, J. Lu, R. Han, P. Li, X. Sun, G. Wang, G. Shi, S. Zhu, Boron neutron capture therapy for malignant melanoma: first clinical case report in China, Chin. J. Canc. Res. 28 (2016) 634-640. https://doi.org/10.21147/j.issn.1000-9604.2016.06.10
  2. R.F. Barth, Z. Zhang, T. Liu, A realistic appraisal of boron neutron capture therapy as a cancer treatment modality, Canc. Commun. 38 (2018) 36. https://doi.org/10.1186/s40880-018-0280-5
  3. T. Yamamoto, A. Matsumura, K. Nakai, Y. Shibata, K. Endo, F. Sakurai, T. Kishi, H. Kumada, K. Yamamoto, Y. Torii, Current clinical results of the Tsukuba BNCT trial, Appl. Radiat. Isot. 61 (2004) 1089-1093. https://doi.org/10.1016/j.apradiso.2004.05.010
  4. A.H. Soloway, H. Hatanaka, M.A. Davis, Penetration of brain and brain tumor.VII.Tumor-binding sulfhydryl boron compounds, J. Med. Chem. 10 (1967) 714-717. https://doi.org/10.1021/jm00316a042
  5. A.J. Kreiner, J. Bergueiro, D. Cartelli, M. Baldo, W. Castell, J.G. Asoia, J. Padulo, J.C. Suarez Sandin, M. Igarzabal, J. Erhardt, D. Mercuri, A.A. Valda, D.M. Minsky, M.E. Debray, H.R. Somacal, M.E. Capoulat, M.S. Herrera, M.F. Del Grosso, L. Gagetti, M.S. Anzorena, N. Canepa, N. Real, M. Gun, H. Tacca, Present status of accelerator-based BNCT, Rep. Practical Oncol. Radiother. 21 (2016) 95-101. https://doi.org/10.1016/j.rpor.2014.11.004
  6. H. Kumada, A. Matsumura, H. Sakurai, T. Sakae, M. Yoshioka, H. Kobayashi, H. Matsumoto, Y. Kiyanagi, T. Shibata, H. Nakashima, Project for the development of the linac based NCT facility in University of Tsukuba, Appl. Radiat. Isot. 88 (2014) 211-215. https://doi.org/10.1016/j.apradiso.2014.02.018
  7. Y. Kiyanagi, Y. Sakurai, H. Kumada, H. Tanaka, Status of accelerator-based BNCT projects worldwide, in: 25th International Conference on the Application of Accelerators in Research and Industry, 2019.
  8. E. Lee, C.W. Lee, G. Cho, Radiation safety analysis for the A-BNCT facility in Korea, Appl. Radiat. Isot. 142 (2018) 92-103. https://doi.org/10.1016/j.apradiso.2018.09.022
  9. T. Yamamoto, K. Nakai, T. Nariai, H. Kumada, T. Okumura, M. Mizumoto, K. Tsuboi, A. Zaboronok, E. Ishikawa, H. Aiyama, K. Endo, T. Takada, F. Yoshida, Y. Shibata, A. Matsumura, The status of Tsukuba BNCT trial: BPA-based boron neutron capture therapy combined with X-ray irradiation, Appl. Radiat. Isot. 69 (2011) 1817-1818. https://doi.org/10.1016/j.apradiso.2011.02.013
  10. G. C Simonetta, D. Annamaria, T. Antonio, A. Diego, V. Paolo, A. Silvio, Boronated compounds for imaging guided BNCT applications, Anticancer Agents Med Chem. 12 (2012) 543-553. https://doi.org/10.2174/187152012800617786
  11. L. Menichetti, L. Cionini, W.A. Sauerwein, S. Altieri, O. Solin, H. Minn, P.A. Salvadori, Positron emission tomography and [18F]BPA: a perspective application to assess tumour extraction of boron in BNCT, Appl. Radiat. Isot. 67 (2009) S351-S354. https://doi.org/10.1016/j.apradiso.2009.03.062
  12. M. Suzuki, Y. Sakurai, S. Hagiwara, S. Masunaga, Y. Kinashi, K. Nagata, A. Maruhashi, M. Kudo, K. Ono, First attempt of boron neutron capture therapy (BNCT) for hepatocellular carcinoma, Jpn. J. Clin. Oncol. 37 (2007) 376-381. https://doi.org/10.1093/jjco/hym039
  13. P.M. Munck af Rosenschold, W.F. Verbakel, C.P. Ceberg, F. Stecher-Rasmussen, B.R. Persson, Toward clinical application of prompt gamma spectroscopy for in vivo monitoring of boron uptake in boron neutron capture therapy, Med. Phys. 28 (2001) 787-795. https://doi.org/10.1118/1.1367281
  14. A. Valda, D.M. Minsky, A.J. Kreiner, A.A. Burlon, H. Somacal, Development of a tomographic system for online dose measurements in BNCT (boron neutron capture therapy), Braz. J. Phys. 35 (2005) 785-788. https://doi.org/10.1590/S0103-97332005000500017
  15. D.M. Minsky, A.A. Valda, A.J. Kreiner, S. Green, C. Wojnecki, Z. Ghani, First tomographic image of neutron capture rate in a BNCT facility, Appl. Radiat. Isot. 69 (2011) 1858-1861. https://doi.org/10.1016/j.apradiso.2011.01.030
  16. T. Kobayashi, Y. Saurai, M. Ishikawa, A noninvasive dose estimation system for clinical BNCT based on PG-SPECT-conceptual study and fundamental experiments using HPGe and CdTe semiconductor detectors, Med. Phys. 27 (2000) 2124-2131. https://doi.org/10.1118/1.1288243
  17. D.K. Yoon, J.Y. Jung, K. Jo Hong, T. Suk Suh, Tomographic image of prompt gamma ray from boron neutron capture therapy: a Monte Carlo simulation study, Appl. Phys. Lett. 104 (2014).
  18. T. Lee, H. Lee, W. Lee, Monitoring the distribution of prompt gamma rays in boron neutron capture therapy using a multiple-scattering Compton camera: a Monte Carlo simulation study, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 798 (2015) 135-139. https://doi.org/10.1016/j.nima.2015.07.038
  19. M.S. Kim, H.B. Shin, M.G. Choi, H. Monzen, J.G. Shim, T.S. Suh, D.K. Yoon, Reference based simulation study of detector comparison for BNCT-SPECT imaging, Nucl.Eng. Technol. 52 (1) (2019) 155-163, https://doi.org/10.1016/j.net.2019.07.002.
  20. M. Manabe, S. Nakamura, I. Murata, Study on measuring device arrangement of array-type CdTe detector for BNCT-SPECT, Rep. Practical Oncol. Radiother. 21 (2016) 102-107. https://doi.org/10.1016/j.rpor.2015.04.002
  21. I. Murata, T. Mukai, S. Nakamura, H. Miyamaru, I. Kato, Development of a thick CdTe detector for BNCT-SPECT, Appl. Radiat. Isot. 69 (2011) 1706-1709. https://doi.org/10.1016/j.apradiso.2011.05.014
  22. M. Manabe, F. Sato, I. Murata, Basic detection property of an array-type CdTe detector for BNCT-SPECT - measurement and analysis of anti-coincidence events, Appl. Radiat. Isot. 118 (2016) 389-394. https://doi.org/10.1016/j.apradiso.2015.11.003
  23. I. Murata, S. Nakamura, M. Manabe, H. Miyamaru, I. Kato, Characterization measurement of a thick CdTe detector for BNCT-SPECT-detection efficiency and energy resolution, Appl. Radiat. Isot. 88 (2014) 129-133. https://doi.org/10.1016/j.apradiso.2014.01.023
  24. D.K. Yoon, J.Y. Jung, K. Jo Hong, K. Sil Lee, T. Suk Suh, GPU-based prompt gamma ray imaging from boron neutron capture therapy, Med. Phys. 42 (2015) 165-169.
  25. D.K. Yoon, J.Y. Jung, S.M. Han, T.S. Suh, Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study, J. Radioanal. Nucl. Chem. 303 (2014) 859-866. https://doi.org/10.1007/s10967-014-3572-5
  26. H.B. Shin, D.K. Yoon, J.Y. Jung, M.S. Kim, T.S. Suh, Prompt gamma ray imaging for verification of proton boron fusion therapy: a Monte Carlo study, Phys. Med. 32 (2016) 1271-1275. https://doi.org/10.1016/j.ejmp.2016.05.053
  27. F.J. Beekman, H.W. de Jong, S. van Geloven, Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation, IEEE Trans. Med. Imag. 21 (2002) 867-877. https://doi.org/10.1109/TMI.2002.803130
  28. L. Zhou, G. Gindi, Collimator optimization in SPECT based on a joint detection and localization task, Phys. Med. Biol. 54 (2009) 4423-4437. https://doi.org/10.1088/0031-9155/54/14/005
  29. K. Nedunchezhian, N. Aswath, M. Thiruppathy, S. Thirugnanamurthy, Boron neutron capture therapy - a literature review, J. Clin. Diagn. Res. 10 (2016). ZE01-ZE04.
  30. T. Kobayashi, G. Bengua, K. Tanaka, N. Hayashizaki, T. Katabuchi, T. Hattori, M. Aritomi, A novel BNCT irradiation system with an on-line monitor using 7Li(P,N)7Be near threshold neutrons, Radiat. Meas. 46 (2011) 2000-2002. https://doi.org/10.1016/j.radmeas.2011.08.024
  31. S. Fatemi, C. Gong, S. Bortolussi, C. Magni, I. Postuma, X. Tang, S. Altieri, N. Protti, Preliminary Monte Carlo simulations of a SPECT system based on CdZnTe detectors for real time BNCT dose monitoring, in: IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings, NSS/MIC), Sydney, Australia, 2018. November 10-17, 2018.
  32. J.Y. Jung, B. Lu, D.K. Yoon, K.J. Hong, H. Jang, C. Liu, T.S. Suh, Therapy region monitoring based on PET using 478 keV single prompt gamma ray during BNCT: a Monte Carlo simulation study, Phys. Med. 32 (2016) 562-567. https://doi.org/10.1016/j.ejmp.2016.02.010
  33. L.W. Wang, Y.W. Chen, C.Y. Ho, Y.W. Hsueh Liu, F.I. Chou, Y.H. Liu, H.M. Liu, J.J. Peir, S.H. Jiang, C.W. Chang, C.S. Liu, S.J. Wang, P.Y. Chu, S.H. Yen, Fractionated BNCT for locally recurrent head and neck cancer: experience from a phase I/II clinical trial at Tsing Hua Open-Pool Reactor, Appl. Radiat. Isot. 88 (2014) 23-27. https://doi.org/10.1016/j.apradiso.2013.11.134
  34. I. Kato, K. Ono, Y. Sakurai, M. Ohmae, A. Maruhashi, Y. Imahori, M. Kirihata, M. Nakazawa, Y. Yura, Effectiveness of BNCT for recurrent head and neck malignancies, Appl. Radiat. Isot. 61 (2004) 1069-1073. https://doi.org/10.1016/j.apradiso.2004.05.059
  35. R. Khelifi, V.A. Nievaart, P. Bode, R.L. Moss, G.C. Krijger, Toward prompt gamma spectrometry for monitoring boron distributions during extra corporal treatment of liver metastases by boron neutron capture therapy: a Monte Carlo simulation study, Appl. Radiat. Isot. 67 (2009) S359-S361. https://doi.org/10.1016/j.apradiso.2009.03.105
  36. K.J. Hong, Y. Choi, J.H. Jung, J. Kang, W. Hu, H.K. Lim, Y. Huh, S. Kim, J.W. Jung, K.B. Kim, M.S. Song, H.W. Park, A prototype MR insertable brain PET using tileable GAPD arrays, Med. Phys. 40 (2013), 042503. https://doi.org/10.1118/1.4793754
  37. D.M. Minsky, A.A. Valda, A.J. Kreiner, S. Green, C. Wojnecki, Z. Ghani, Experimental feasibility studies on a SPECT tomograph for BNCT dosimetry, Appl. Radiat. Isot. 67 (2009) S179-S182. https://doi.org/10.1016/j.apradiso.2009.03.044
  38. K.F. Koral, J.N. Kritzmaan, V.E. Rogers, R.J. Ackermann, J.A. Fessler, Optimizing the number of equivalent iterations of 3D OSEM in SPECT reconstruction of I-131 focal activities, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 579 (2007) 326-329. https://doi.org/10.1016/j.nima.2007.04.070
  39. S.M. Kim, J.S. Lee, M.N. Lee, J.H. Lee, J.H. Kim, C.H. Kim, C.S. Lee, D.S. Lee, S.J. Lee, A comparative study of subset construction methods in OSEM algorithms using simulated projection data of Compton camera, Nucl. Med. Mol. Imag. 41 (2007) 234-240.
  40. A. Bitar, A. Lisbona, P. Thedrez, C. Sai Maurel, D. Le Forestier, J. Barbet, M. Bardies, A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP), Phys. Med. Biol. 52 (2007) 1013-1025. https://doi.org/10.1088/0031-9155/52/4/010