DOI QR코드

DOI QR Code

High-temperature oxidation behaviors of ZrSi2 and its coating on the surface of Zircaloy-4 tube by laser 3D printing

  • Kim, Jae Joon (Department of Nuclear and Quantum Engineering, KAIST) ;
  • Kim, Hyun Gil (ATF Technology Development Division, KAERI) ;
  • Ryu, Ho Jin (Department of Nuclear and Quantum Engineering, KAIST)
  • 투고 : 2019.11.29
  • 심사 : 2020.02.27
  • 발행 : 2020.09.25

초록

The high-temperature oxidation behavior of ZrSi2 used as a coating material for nuclear fuel cladding was investigated for developing accident-tolerant fuel cladding of light water reactors. Bulk ZrSi2 samples were prepared by spark plasma sintering. In situ X-ray diffraction was conducted in air at 900, 1000, and 1100 ℃ for 20 h. The microstructures of the samples before and after oxidation were examined by scanning electron microscopy and transmission electron microscopy. The results showed that the oxide layer of zirconium silicide exhibited a layer-by-layer structure of crystalline ZrO2 and amorphous SiO2, and the high-temperature oxidation resistance was superior to that of Zircaloy-4 owing to the SiO2 layer formed. ZrSi2 was coated on the Zircaloy-4 tube surface using laser 3D printing, and the coated tube was oxidized for 2000 s at 1200 ℃ under a vapor/argon mixture atmosphere. The outer surface of the coated tube was hardly oxidized (10-30 ㎛), while the inner surface of the uncoated tube was significantly oxidized to approximately 300 ㎛.

키워드

참고문헌

  1. H.H. Kim, J.H. Kim, J.Y. Moon, H.S. Lee, J.J. Kim, Y.S. Chai, High-temperature oxidation behavior of Zircaloy-4 and Zirlo in steam ambient, J. Mater. Sci. Technol. 26 (2010) 827-832. https://doi.org/10.1016/S1005-0302(10)60132-6
  2. P.M. Kelly, C.J. Wauchope, The tetragonal to monoclinic martensitic transformation in zirconia, Key Eng. Mater. (1998). https://doi.org/10.4028/www.scientific.net/kem.153-154.97.
  3. J.R. Kelly, I. Denry, Stabilized zirconia as a structural ceramic: an overview, Dent. Mater. (2008), https://doi.org/10.1016/j.dental.2007.05.005.
  4. J.M. Kim, T.H. Ha, I.H. Kim, H.G. Kim, Microstructure and oxidation behavior of CrAl laser-coated Zircaloy-4 alloy, Metals (2017), https://doi.org/10.3390/met7020059.
  5. X. Han, Y. Wang, S. Peng, H. Zhang, Oxidation behavior of FeCrAl coated Zry-4 under high temperature steam environment, Corrosion Sci. (2019), https://doi.org/10.1016/j.corsci.2019.01.004.
  6. J.H. Park, H.G. Kim, J. yong Park, Y. Il Jung, D.J. Park, Y.H. Koo, High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings, Surf. Coating. Technol. (2015), https://doi.org/10.1016/j.surfcoat.2015.09.022.
  7. H.-G. Kim, I.-H. Kim, J.-Y. Park, Y.-H. Koo, Application of coating technology on zirconium-based alloy to decrease high-temperature oxidation, in: Zircon. Nucl. Ind 17th, 2015, https://doi.org/10.1520/stp154320120161.
  8. H.G. Kim, I.H. Kim, Y. Il Jung, D.J. Park, J.Y. Park, Y.H. Koo, Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating, J. Nucl. Mater. (2015), https://doi.org/10.1016/j.jnucmat.2015.06.030.
  9. K.A. Terrani, C.M. Parish, D. Shin, B.A. Pint, Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure, J. Nucl. Mater. (2013), https://doi.org/10.1016/j.jnucmat.2013.03.006.
  10. B. Cheng, Y.J. Kim, P. Chou, Improving accident tolerance of nuclear fuel with coated Mo-alloy cladding, Nucl. Eng. Technol. (2016), https://doi.org/10.1016/j.net.2015.12.003.
  11. I. Idarraga-Trujillo, M. Le Flem, J.C. Brachet, M. Le Saux, D. Hamon, S. Muller, V. Vandenberghe, M. Tupin, E. Papin, E. Monsifrot, A. Billard, F. Schuster, Assessment at CEA of coated nuclear fuel cladding for LWRS with increased margins in loca and beyond loca conditions, in: LWR Fuel Perform. Meet. Top Fuel, 2013, 2013.
  12. B. Maier, H. Yeom, G. Johnson, T. Dabney, J. Walters, J. Romero, H. Shah, P. Xu, K. Sridharan, Development of cold spray coatings for accident-tolerant fuel cladding in light water reactors, JOM (2018), https://doi.org/10.1007/s11837-017-2643-9.
  13. M. Sevecek, A. Gurgen, A. Seshadri, Y. Che, M. Wagih, B. Phillips, V. Champagne, K. Shirvan, Development of Cr cold sprayecoated fuel cladding with enhanced accident tolerance, Nucl. Eng. Technol. (2018), https://doi.org/10.1016/j.net.2017.12.011.
  14. S. Knittel, S. Mathieu, M. Vilasi, The oxidation behaviour of uniaxial hot pressed MoSi2 in air from 400 to $1400^{\circ}C$, Intermetallics (2011), https://doi.org/10.1016/j.intermet.2011.03.029.
  15. C.G. McKamey, P.F. Tortorelli, J.H. DeVan, C.A. Carmichael, A study of pest oxidation in polycrystalline MoSi2, J. Mater. Res. (1992), https://doi.org/10.1557/JMR.1992.2747.
  16. S. Melsheimer, M. Fietzek, V. Kolarik, A. Rahmel, M. Schutze, Oxidation of the intermetallics MoSi2 and TiSi2 - a comparison, Oxid. Metals (1997), https://doi.org/10.1007/BF01682375.
  17. T. Sandwick, K. Rajan, The oxidation of titanium silicide, J. Electron. Mater. (1990), https://doi.org/10.1007/BF02673332.
  18. R. Rosenkranz, G. Frommeyer, Microstructures and properties of the refractory compounds TiSi2 and ZrSi2, zeitschrift fuer met, Res. Adv. Tech. (1992).
  19. H. Gesswein, A. Pfrengle, J.R. Binder, J. Hausselt, Kinetic model of the oxidation of ZrSi2 powders, J. Therm. Anal. Calorim. (2008), https://doi.org/10.1007/s10973-007-8461-5.
  20. H. Yeom, B. Maier, R. Mariani, D. Bai, K. Sridharan, Evolution of multilayered scale structures during high temperature oxidation of ZrSi2, J. Mater. Res. (2016), https://doi.org/10.1557/jmr.2016.363.
  21. H. Yeom, High Temperature Corrosion and Heat Transfer Studies of Zirconium-Silicide Coatings for Light Water Reactor Cladding, The University of Wisconsin, Madison, 2017. http://search.proquest.com.ezproxy.library.wisc.edu/docview/1952167476?accountid=465.
  22. W.J. Strydom, J.C. Lombaard, R. Pretorius, Thermal oxidation of the silicides CoSi2, CrSi2, NiSi2, PtSi, TiSi2 and ZrSi2, Thin Solid Films (1985), https://doi.org/10.1016/0040-6090(85)90142-7.
  23. R.C. Garvie, The occurrence of metastable tetragonal zirconia as a crystallite size effect, J. Phys. Chem. (1965), https://doi.org/10.1021/j100888a024.
  24. C.E. Curtis, H.G. Sowman, Investigation of the thermal dissociation, reassociation, and synthesis of zircon, J. Am. Ceram. Soc. (1953), https://doi.org/10.1111/j.1151-2916.1953.tb12865.x.
  25. K. Kurokaw, A. Yamauchi, Classification of oxidation behavior of disilicides, in: Solid State Phenom, 2007. https://doi.org/10.4028/www.scientific.net/SSP.127.227.
  26. S.K. Saxena, N. Chatterjee, Y. Fei, G. Shen, Thermodynamic data on oxides and silicates. https://doi.org/10.1007/978-3-642-78332-6, 1993.
  27. O. Kubaschewski, THERMODYNAMIC PROPERTIES OF DOUBLE OXIDES, High Temp. High Press, 1972.
  28. J. Rodríguez-Viejo, F. Sibieude, M.T. Clavaguera-Mora, C. Monty, 18O diffusion through amorphous SiO2 and cristobalite, Appl. Phys. Lett. (1993), https://doi.org/10.1063/1.110644.
  29. S. Roy, A. Paul, Growth of hafnium and zirconium silicides by reactive diffusion, Mater. Chem. Phys. (2014), https://doi.org/10.1016/j.matchemphys.2013.11.039.
  30. B. Oberlander, P. Kofstad, I. Kvernes, On Oxygen Diffusion in tetragonal zirconia, Mater. Werkst. (1988), https://doi.org/10.1002/mawe.19880190604.

피인용 문헌

  1. Thermomechanical stability evaluation of various pellicle structures with contaminant particles vol.60, pp.3, 2020, https://doi.org/10.35848/1347-4065/abe687
  2. Surface decontamination of protective duplex oxide layers on stainless steel waste using deep eutectic solvents vol.425, 2020, https://doi.org/10.1016/j.jhazmat.2021.128000