DOI QR코드

DOI QR Code

Understanding the role of hydrogen on creep behaviour of Zircaloy-4 cladding tubes using nanoindentation

  • Suman, Siddharth (Department of Mechanical Engineering, Indian Institute of Technology Patna)
  • 투고 : 2019.10.08
  • 심사 : 2020.02.13
  • 발행 : 2020.09.25

초록

The present article investigates the influence of hydrogen concentration on the creep performance of cold-worked stress-relieved unirradiated Zircaloy-4 cladding tube using nanoindentation technique. The as-received Zircaloy-4 tube is hydrided to the concentrations of 600 ppm and 900 ppm using gaseous hydrogen charging method. Constant load indentation creep tests are performed for a dwell period of 600 s in the temperature range of 300℃-500 ℃ at 1000 μN, 2000 μN, and 3000 μN. The impact of hydrogen is evaluated in terms of steady state power law creep exponent and activation energy. The power law creep exponent decreases with increase in hydrogen concentration, however, it remains fairly constant with increase in temperature up to 500 ℃. Moreover, activation energy too decreases significantly with increase in hydrogen concentration. The mean stress exponent and activation energy are found to be 3.58 and 28.67 kJ/mol, respectively, for as-received sample.

키워드

참고문헌

  1. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, J.K. Chakravartty, Hydrogen in zircaloy: mechanism and its impacts, Int. J. Hydrogen Energy 40 (2015) 5976-5994, https://doi.org/10.1016/J.IJHYDENE.2015.03.049.
  2. S. Suman, Burst criterion for Indian PHWR fuel cladding under simulated lossof- coolant accident, Nucl. Eng. Technol. (2019), https://doi.org/10.1016/j.net.2019.04.004.
  3. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Effects of hydrogen on thermal creep behaviour of Zircaloy fuel cladding, J. Nucl. Mater. 498 (2018) 20-32, https://doi.org/10.1016/J.JNUCMAT.2017.10.015.
  4. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Effects of hydride on crack propagation in zircaloy-4, Procedia Eng 173 (2017) 1185-1190, https://doi.org/10.1016/j.proeng.2016.12.105.
  5. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Investigation of elevated-temperature mechanical properties of ${\delta}$-hydride precipitate in Zircaloy-4 fuel cladding tubes using nanoindentation, J. Alloys Compd. 726 (2017) 107-113, https://doi.org/10.1016/J.JALLCOM.2017.07.321.
  6. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, Effects of D-hydride precipitated at a crack tip on crack instability in Zircaloy-4, Int. J. Energy Res. 42 (2018) 284-292, https://doi.org/10.1002/er.3905.
  7. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, 3D simulation of hydride-assisted crack propagation in zircaloy-4 using XFEM, Int. J. Hydrogen Energy 42 (2017) 18668-18673, https://doi.org/10.1016/J.IJHYDENE.2017.04.163.
  8. S. Suman, Influence of hydrogen concentration on burst parameters of Zircaloy-4 cladding tube under simulated loss-of-coolant accident, Nucl. Eng. Technol. (2020) 1-313. https://doi.org/10.1016/j.net.2020.02.009.
  9. P. Bouffioux, N. Rupa, Impact of hydrogen on plasticity and creep of unirradiated Zircaloy-4 cladding tubes, in: ASTM Spec. Tech. Publ., ASTM, 2000, pp. 399-422, https://doi.org/10.1520/stp14310s.
  10. N. Rupa, M. Clavel, P. Bouffioux, C. Domain, A. Legris, About the mechanisms governing the hydrogen effect on viscoplasticity of unirradiated fully annealed zircaloy-4 sheet, ASTM Spec. Tech. Publ. 1423 (2002) 811-836.
  11. D. Setoyama, S. Yamanaka, Indentation creep study of zirconium hydrogen solid solution, J. Alloys Compd. 379 (2004) 193-197, https://doi.org/10.1016/j.jallcom.2004.02.035.
  12. R. Kishore, Effect of hydrogen on the creep behavior of Zr-2.5%Nb alloy at 723 K, J. Nucl. Mater. 385 (2009) 591-594, https://doi.org/10.1016/j.jnucmat.2009.01.034.
  13. Y. Il Jung, Y.N. Seol, B.K. Choi, J.Y. Park, Thermal creep of Zircaloy-4 tubes containing corrosion-induced hydrogen, J. Nucl. Mater. 419 (2011) 213-216, https://doi.org/10.1016/j.jnucmat.2011.08.047.
  14. A. Sarkar, K. Boopathy, J. Eapen, K.L. Murty, Creep behavior of hydrogenated zirconium alloys, J. Mater. Eng. Perform. 23 (2014) 3649-3656, https://doi.org/10.1007/s11665-014-1129-y.
  15. B. Kombaiah, Transitions in Creep Mechanisms of Zirconium Alloys, North Carolina State University, ProQuest Dissertations Publishing, 2015.
  16. S. Pathak, D. Stojakovic, R. Doherty, S.R. Kalidindi, Importance of surface preparation on the nano-indentation stress-strain curves measured in metals, J. Mater. Res. 24 (2009) 1142-1155, https://doi.org/10.1557/jmr.2009.0137.
  17. S. Suman, M.K. Khan, M. Pathak, R.N. Singh, J.K. Chakravartty, Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident, Nucl. Eng. Des. 307 (2016) 319-327, https://doi.org/10.1016/J.NUCENGDES.2016.07.022.
  18. V.M.F. Marques, B. Wunderle, C. Johnston, P.S. Grant, Nanomechanical characterization of Sn-Ag-Cu/Cu joints-Part 2: nanoindentation creep and its relationship with uniaxial creep as a function of temperature, Acta Mater. 61 (2013) 2471-2480, https://doi.org/10.1016/j.actamat.2013.01.020.
  19. P. Nautiyal, J. Jain, A. Agarwal, Influence of loading path and precipitates on indentation creep behavior of wrought Mg-6wt% Al-1wt% Zn magnesium alloy, Mater. Sci. Eng. 650 (2016) 183-189, https://doi.org/10.1016/j.msea.2015.10.040.
  20. P. Nautiyal, J. Jain, A. Agarwal, A comparative study of indentation induced creep in pure magnesium and AZ61 alloy, Mater. Sci. Eng. 630 (2015) 131-138, https://doi.org/10.1016/j.msea.2015.01.075.
  21. K. Sambhava, P. Nautiyal, J. Jain, Model based phenomenological and experimental investigation of nanoindentation creep in pure Mg and AZ61 alloy, Mater. Des. 105 (2016) 142-151, https://doi.org/10.1016/j.matdes.2016.05.036.
  22. S.C. Storer, M.E. Fitzpatrick, S.V. Hainsworth, M.A. Rist, Experimental study of room-temperature indentation viscoplastic 'creep' in zirconium, Philos. Mag. A 96 (2016) 2547-2563, https://doi.org/10.1080/14786435.2016.1209310.
  23. P.S. Phani, W.C. Oliver, A direct comparison of high temperature nanoindentation creep and uniaxial creep measurements for commercial purity aluminum, Acta Mater. 111 (2016) 31-38, https://doi.org/10.1016/j.actamat.2016.03.032.
  24. R. Goodall, T.W. Clyne, A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature, Acta Mater. 54 (2006) 5489-5499, https://doi.org/10.1016/j.actamat.2006.07.020.
  25. D. Peykov, E. Martin, R.R. Chromik, R. Gauvin, M. Trudeau, Evaluation of strain rate sensitivity by constant load nanoindentation, J. Mater. Sci. 47 (2012) 7189-7200, https://doi.org/10.1007/s10853-012-6665-y.
  26. M.J. Mayo, R.W. Siegel, a. Narayanasamy, W.D. Nix, Mechanical properties of nanophase TiO2 as determined by nanoindentation, J. Mater. Res. 5 (1990) 1073-1082, https://doi.org/10.1557/JMR.1990.1073.
  27. M.K. Khan, M. Pathak, S. Suman, A. Deo, R. Singh, Burst investigation on zircaloy-4 claddings in inert environment, Ann. Nucl. Energy 69 (2014) 292-300, https://doi.org/10.1016/J.ANUCENE.2014.02.017.
  28. H.E. Rosinger, P.C. Bera, W.R. Clendening, Steady-state creep of zircaloy-4 fuel cladding from 940 to 1873 K, J. Nucl. Mater. 82 (1979) 286-297, https://doi.org/10.1016/0022-3115(79)90011-4.
  29. D. Kaddour, S. Frechinet, A.F. Gourgues, J.C. Brachet, L. Portier, A. Pineau, Experimental determination of creep properties of zirconium alloys together with phase transformation, Scripta Mater. 51 (2004) 515-519, https://doi.org/10.1016/j.scriptamat.2004.05.046.
  30. F.J. Erbacher, H.J. Neitzel, H. Rosinger, H. Schmidt, K. Wiehr, Burst criterion OF zircaloy fuel claddings IN a loss-of-coolant accident, in: ASTM Spec. Tech. Publ., ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 1982, pp. 271-283, https://doi.org/10.1520/stp37058s, 19428-2959.
  31. H.E. Rosinger, A model to predict the failure of zircaloy-4 fuel sheathing during postulated loca conditions, J. Nucl. Mater. 120 (1984) 41-54, https://doi.org/10.1016/0022-3115(84)90169-7.
  32. A.T. Donaldson, T. Healey, R.A.L. Horwood, Biaxial Creep Deformation of Zircaloy-4 PWR Fuel Cladding in the Alpha,(alpha + Beta) and Beta Phase Temperature Ranges, 1985.

피인용 문헌

  1. Deep neural network based prediction of burst parameters for Zircaloy-4 fuel cladding during loss-of-coolant accident vol.52, pp.11, 2020, https://doi.org/10.1016/j.net.2020.04.025
  2. Impact of hydrogen on rupture behaviour of Zircaloy-4 nuclear fuel cladding during loss-of-coolant accident: a novel observation of failure at multiple locations vol.53, pp.2, 2020, https://doi.org/10.1016/j.net.2020.07.017