DOI QR코드

DOI QR Code

Robustness of optimized FPID controller against uncertainty and disturbance by fractional nonlinear model for research nuclear reactor

  • Zare, Nafiseh (Department of Engineering, Parand Branch, Islamic Azad University) ;
  • Jahanfarnia, Gholamreza (Department of Nuclear Engineering, Science and Research Branch, Islamic Azad University) ;
  • Khorshidi, Abdollah (School of Paramedical, Gerash University of Medical Sciences) ;
  • Soltani, Jamshid (Department of Engineering, Parand Branch, Islamic Azad University)
  • 투고 : 2019.12.14
  • 심사 : 2020.03.03
  • 발행 : 2020.09.25

초록

In this study, a fractional order proportional integral derivative (FOPID) controller is designed to create the reference power trajectory and to conquer the uncertainties and external disturbances. A fractional nonlinear model was utilized to describe the nuclear reactor dynamic behaviour considering thermal-hydraulic effects. The controller parameters were tuned using optimization method in Matlab/Simulink. The FOPID controller was simulated using Matlab/Simulink and the controller performance was evaluated for Hard variation of the reference power and compared with that of integer order a proportional integral derivative (IOPID) controller by two models of fractional neutron point kinetic (FNPK) and classical neutron point kinetic (CNPK). Also, the FOPID controller robustness was appraised against the external disturbance and uncertainties. Simulation results showed that the FOPID controller has the faster response of the control attempt signal and the smaller tracking error with respect to the IOPID in tracking the reference power trajectory. In addition, the results demonstrated the ability of FOPID controller in disturbance rejection and exhibited the good robustness of controller against uncertainty.

키워드

참고문헌

  1. G. Espinosa-Paredes, M.A. Polo-Labarrios, E.G. Espinosa-Martinez, E. del Valle-Gallegos, Fractional neutron point kinetics equations for nuclear reactor dynamics, Ann. Nucl. Energy 38 (2-3) (2011) 307-330, https://doi.org/10.1016/j.anucene.2010.10.012.
  2. A. Khorshidi, Molybdenum-99 production via lead and bismuth moderators and milli-structure-98Mo samples by indirect production technique using Monte Carlo method, Phys. Usp. 62 (9) (2019), https://doi.org/10.3367/UFNr.2018.09.038441.
  3. A. Khorshidi, Gold nanoparticles production using reactor and cyclotron based methods in assessment of 196,198Au production yields by 197Au neutron absorption for therapeutic purposes, Mater. Sci. Eng. C Mater. Biol. Appl. 68 (2016) 449-454, https://doi.org/10.1016/j.msec.2016.06.018.
  4. A. Khorshidi, Neutron activator design for 99Mo production yield estimation via lead and water moderators in transmutation's analysis, Instrum. Exp. Tech. 61 (2018) 198, https://doi.org/10.1134/S002044121802015X.
  5. A. Khorshidi, Radiochemical parameters of molybdenum-99 transmutation in cyclotron-based production method using a neutron activator design for nuclear-medicine aims, Eur. Phys. J. Plus 134 (6) (2019) 249, https://doi.org/10.1140/epjp/i2019-12568-3.
  6. G. Espinosa-Paredes, M.A. Polo-Labarrios, Analysis of the fractional neutron point kinetics (FNPK) equation, Ann. Nucl. Energy 92 (2016) 363-368, https://doi.org/10.1016/j.anucene.2016.02.009.
  7. G. Espinosa-Paredes, M.A. Polo-Labarrios, L. Diaz-Gonzalez, A. Vazquez-Rodriguez, E.G. Espinosa-Martineza, Sensitivity and uncertainty analysis of the fractional neutron point kinetics equations, Ann. Nucl. Energy 42 (2012) 169-174, https://doi.org/10.1016/j.anucene.2011.11.023.
  8. M.A. Polo-Labarrios, G. Espinosa-Paredes, Application of the fractional neutron point kinetic equation: start-up of a nuclear reactor, Ann. Nucl. Energy 46 (2012) 37-42, https://doi.org/10.1016/j.anucene.2012.03.015.
  9. G. Espinosa-Paredes, E. del Valle Gallegos, A. Nunez-Carrera, M.A. Polo-Labarrios, E.G. Espinosa-Martinez, A. Vazquez-Rodriguez, Fractional neutron point kinetics equation with Newtonian temperature feedback effects, Prog. Nucl. Energy 73 (2014) 96-101, https://doi.org/10.1016/j.pnucene.2014.01.009.
  10. M. Schramm, B.E.J. Bodmann, A.C.M. Alvim, M.T. Vilhena, The neutron point kinetics equation: suppression of fractional derivative effects by temperature feedback, Ann. Nucl. Energy 87 (2016) 479-485, https://doi.org/10.1016/j.anucene.2015.10.003.
  11. M. Polo-Labarrios, E.G. Espinosa-Martinez, S. Quezada-Garcia, J.R. Varela-Ham, G. Espinosa-Paredes, Fractional neutron point kinetic equation with ramp and sinusoidal reactivity effects, Ann. Nucl. Energy 72 (2014) 90-94, https://doi.org/10.1016/j.anucene.2014.05.005.
  12. E. Rojas-Ramirez, J.S. Benitez-Read, A. Segovia-De-Los Rios, A stable adaptive fuzzy control scheme for tracking an optimal power profile in a research nuclear reactor, Ann. Nucl. Energy 58 (2013) 238-245, https://doi.org/10.1016/j.anucene.2013.03.026.
  13. Z. Dong, Nonlinear state-feedback dissipation power level control for nuclear reactors, IEEE Trans. Nucl. Sci. 58 (1) (2011) 241-257, https://doi.org/10.1109/TNS.2010.2091970.
  14. L. Xia, J. Jiang, J.C. Luxat, Power distribution control of CANDU reactors based on modal representation of reactor kinetics, Nucl. Eng. Des. 278 (2014) 323-332, https://doi.org/10.1016/j.nucengdes.2014.05.048.
  15. H. Eliasi, M. Menhaj, H. Davilu, Robust nonlinear model predictive control for a PWR nuclear power plant, Prog. Nucl. Energy 54 (2012) 177-185, https://doi.org/10.1016/j.pnucene.2011.06.004.
  16. G. Li, F. Zhao, Load following control and global stability analysis for PWR core based on multi-model, LQG, IAGA and flexibility idea, Prog. Nucl. Energy 66 (2013) 80-89, https://doi.org/10.1016/j.pnucene.2013.03.015.
  17. R. Coban, Power level control of the TRIGA Mark-II research reactor using the multi feedback layer neural network and the particle swarm optimization, Ann. Nucl. Energy 69 (2014) 260-266, https://doi.org/10.1016/j.anucene.2014.02.019.
  18. R.K. Munje, B.M. Patre, S.R. Shimjith, A.P. Tiwari, Sliding mode control for spatial stabilization of advanced heavy water reactor, IEEE Trans. Nucl. Sci. 60 (2013) 3040-3050, https://doi.org/10.1109/TNS.2013.2264635.
  19. G.R. Ansarifar, M.H. Esteki, M. Arghand, Sliding mode observer design for a PWR to estimate the xenon concentration & delayed neutrons precursor density based on the two point nuclear reactor model, Prog. Nucl. Energy 79 (2015) 104-114, https://doi.org/10.1016/j.pnucene.2014.11.003.
  20. G. Ansarifar, M. Rafiei, Higher order sliding mode controller design for a research nuclear reactor considering the effect of xenon concentration during load following operation, Ann. Nucl. Energy 75 (2015) 728-735, https://doi.org/10.1016/j.anucene.2014.09.021.
  21. I. Petras, Fractional Order Nonlinear Systems: Modeling, Analysis and Simulation, Springer, New York, 2010.
  22. I. Podlubny, Fractional-order Systems and Fractional-Order Controllers, Inst Exp Phys Slovak Acad Sci, Kosice, 1994.
  23. S. Das, A. Gupta, Fractional order modeling of a PHWR under step-back condition and control of its global power with a robust PIlDm controller, IEEE Trans. Nucl. Sci. 58 (2011) 2431-2441, https://doi.org/10.1109/TNS.2011.2164422.
  24. S.S. Bhase, B.M. Patre, Robust FOPI controller design for power control of PHWR under step-back conditions, Nucl. Eng. Des. 274 (2014) 20-29, https:// doi.org/10.1016/j.nucengdes.2014.03.041.
  25. N. Zare Davijani, G. Jahanfarnia, A. Esmaeili Abharian, Nonlinear fractional sliding mode controller based on reduced order FNPK model for output power control of nuclear research reactors, IEEE Trans. Nucl. Sci. 64 (1) (2017) 713-723, https://doi.org/10.1109/TNS.2016.2635026.
  26. S. Saha, S. Das, R. Ghosh, B. Goswami, R. Balasubramanian, A.K. Chandra, S. Das, A. Gupta, Design of a fractional order phase shaper for iso-damped control of a PHWR under step-back condition, IEEE Trans. Nucl. Sci. 57 (2010) 1602-1612, https://doi.org/10.1109/TNS.2010.2047405.
  27. R. Lamba, S.K. Singla, S. Sondhi, Fractional order PID controller for power control in pertubed pressurized heavy water reactor, Nucl. Eng. Des. 323 (2017) 84-94, https://doi.org/10.1016/j.nucengdes.2017.08.013.
  28. M.R. Bongulwar, B.M. Patre, Design of $PI^{\lambda}\;D^{\mu}$ controller for global power control of pressurized heavy water reactor, ISA (Instrum. Soc. Am.) Trans. 69 (2017) 234-241, https://doi.org/10.1016/j.isatra.2017.04.007.
  29. A. Salehi, O. Safarzadeh, M.H. Kazemi, Fractional order PID control of steam generator water level for nuclear steam supply systems, Nucl. Eng. Des. 342 (2019) 45-59, https://doi.org/10.1016/j.nucengdes.2018.11.040.
  30. Atomic Energy Organization of Iran, Final Safety Analyses Report for Tehran Research Reactor, AEOI, Tehran, 2009.
  31. P. Shah, S. Agashe, Review of fractional PID controller, Mechatronics 38 (2016) 29-41, https://doi.org/10.1016/j.mechatronics.2016.06.005.
  32. D. Valerio, J.S. da Costa, Ninteger: a non-integer control toolbox for MATLAB, Proc. Fract. Differ. Appl. Bordeaux (2004).
  33. k Bingi, R. Irahim, M.N. Karstiti, S.M. Hassan, V.R. Harindran, Fractional Order Systems and PID Controllers, Springer, Malaysia, 2020, https://doi.org/10.1007/978-3-030-33934-0.

피인용 문헌

  1. Design, implementation, control and optimization of single stage pilot scale reverse osmosis process vol.84, pp.10, 2020, https://doi.org/10.2166/wst.2021.302