DOI QR코드

DOI QR Code

Validation of nuclide depletion capabilities in Monte Carlo code MCS

  • Ebiwonjumi, Bamidele (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Hyunsuk (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Kim, Wonkyeong (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Deokjung (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology)
  • 투고 : 2019.03.14
  • 심사 : 2020.02.25
  • 발행 : 2020.09.25

초록

In this work, the depletion capability implemented in Monte Carlo code MCS is investigated to predict the isotopic compositions of spent nuclear fuel (SNF). By comparison of MCS calculation results to post irradiation examination (PIE) data obtained from one pressurized water reactor (PWR), the validation of this capability is conducted. The depletion analysis is performed with the ENDF/B-VII.1 library and a fuel assembly model. The transmutation equation is solved by the Chebyshev Rational Approximation Method (CRAM) with a depletion chain of 3820 isotopes. 18 actinides and 19 fission products are analyzed in 14 SNF samples. The effect of statistical uncertainties on the calculated number densities is discussed. On average, most of the actinides and fission products analyzed are predicted within ±6% of the experiment. MCS depletion results are also compared to other depletion codes based on publicly reported information in literature. The code-to-code analysis shows comparable accuracy. Overall, it is demonstrated that the depletion capability in MCS can be reliably applied in the prediction of SNF isotopic inventory.

키워드

참고문헌

  1. L.M. Fensin, J.S. Hendricks, S. Anghaie, The enhancements and testing for the MCNPX 2.6.0 depletion capability, Nucl. Technol. 170 (2010) 68. https://doi.org/10.13182/NT10-2
  2. G.G. Davidson, T.M. Pandya, S.R. Johnson, et al., Nuclide depletion capabilities in the SHIFT Monte Carlo code, Ann. Nucl. Energy 114 (2018) 259. https://doi.org/10.1016/j.anucene.2017.11.042
  3. H.J. Shim, B.S. Han, J.S. Jung, H.J. Park, C.H. Kim, McCARD: Monte Carlo code for advanced reactor design and analysis, Nucl. Eng. Technol. 44 (2) (2012) 161. https://doi.org/10.5516/NET.01.2012.503
  4. J. Leppanen, M. Pusa, T. Viitanen, et al., The serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (2015) 142. https://doi.org/10.1016/j.anucene.2014.08.024
  5. K. Okumura, T. Mori, M. Nakagawa, K. Kaneko, Validation of a continuousenergy Monte Carlo code MVP-BURN and its application to analysis of post irradiation experiment, J. Nucl. Sci. Technol. 37 (2) (2000) 128. https://doi.org/10.3327/jnst.37.128
  6. D. She, Y. Liu, K. Wang, G. Yu, B. Forget, P.K. Romano, K. Smith, Development of burnup method and capabilities in Monte Carlo code RMC, Ann. Nucl. Energy 51 (2013) 289. https://doi.org/10.1016/j.anucene.2012.07.033
  7. H. Lee, Development of a New Monte Carlo Code for Large-Scale Power Reactor Analysis (PhD thesis), Ulsan National Institute of Science and Technology, Ulsan, 2019.
  8. F. Michel-Sendis, I. Gauld, J.S. Martinez, SFCOMPO-2.0: an OECD NEA database of spent nuclear fuel isotopic assays, reactor design specifications, and operations data, Ann. Nucl. Energy 110 (2017) 779. https://doi.org/10.1016/j.anucene.2017.07.022
  9. SFCOMPO 2.0, Spent Fuel Composition Database, Organization for Economic Cooperation and Development, Nuclear Energy Agency, 2017. http://www.oecd-nea.org/sfcompo.
  10. Y. Nakahara, K. Suyama, J. Inagawa, R. Nagaishi, S. Kurosawa, N. Kohno, M. Onuki, H. Mochizuki, Nuclide composition benchmark data set for verifying burnup codes on spent light water reactor fuels, Nucl. Technol. 137 (2) (2002) 111. https://doi.org/10.13182/NT02-2
  11. J. Jang, W. Kim, S. Jeong, E. Jeong, J. Park, M. Lemaire, H. Lee, Y. Jo, P. Zhang, D. Lee, Validation of UNIST Monte Carlo code MCS for criticality safety analysis of PWR spent fuel pool and storage cask, Ann. Nucl. Energy 114 (2018) 495. https://doi.org/10.1016/j.anucene.2017.12.054
  12. H. Lee, W. Kim, P. Zhang, A. Khassenov, J. Park, J. Yu, S. Choi, H.W. Lee, D. Lee, Preliminary Simulation Results of BEAVRS Three-Dimensional Cycle 1 Wholecore Depletion by UNIST Monte Carlo Code MCS. M&C2017, 2017. Jeju, Korea, April 16-20.
  13. Lee H, Kong C, Lee DJ. Status of Monte Carlo code development at UNIST. In: Proceedings of the PHYSOR Conference; 2014 Sep 28 - Oct 3; Kyoto: Japan. ([USB]).
  14. Lee H., Kim W., Zhang P., Khassenov A., Jo Y., Lee DJ. Development status of Monte Carlo code at UNIST. In: Proceedings of the Korean Nuclear Society Spring Meeting; 2016 May 11-13; Jeju: Korea. ([USB])
  15. M. Lemaire, H. Lee, B. Ebiwonjumi, C. Kong, W. Kim, Y. Jo, J. Park, D. Lee, Verification of photon transport capability of UNIST Monte Carlo code MCS, Comput. Phys. Commun. 231 (2018) 1. https://doi.org/10.1016/j.cpc.2018.05.008
  16. J. Yu, H. Lee, H. Kim, P. Zhang, D. Lee, Preliminary coupling of the thermal/hydraulic solvers in the Monte Carlo code MCS for practical LWR analysis, Ann. Nucl. Energy 118 (2018) 317. https://doi.org/10.1016/j.anucene.2018.03.043
  17. J. Yu, H. Lee, M. Lemaire, et al., MCS based neutronics/thermal-hydraulics/fuel-performance coupling with CTF and FRAPCON, Comput. Phys. Commun. (2019), https://doi.org/10.1016/j.cpc.2019.01.001.
  18. M. Lemaire, H. Lee, N. Tak, H.C. Lee, D. Lee, Multi-physics steady-state analysis of OECD/NEA modular high temperature gas-cooled reactor MHTGR-350, J. Nucl. Sci. Technol. 54 (6) (2017) 668. https://doi.org/10.1080/00223131.2017.1299649
  19. Vutheam Dos, Hyunsuk Lee, Jiwon Choe, Ho Cheol Shin, Hwan Soo Lee, Deokjung Lee, Validation of UNIST MCS Monte Carlo Code System for OPR-1000, Transaction of KNS Spring Meeting, Jeju, Korea, 2018. May 16-18.
  20. T.Q. Tran, H. Lee, J. Choe, Y. Jo, S. Choi, H.S. Lee, H.C. Shin, D. Lee, Monte Carlo wholecore depletion analysis of yonggwang unit 3 cycles 1 and 2, 2018, in: 6th International Conference on Nuclear and Renewable Energy Resources, NURER, Jeju, Korea, 2018. Sep. 30 - Oct. 3 (2018).
  21. B. Ebiwonjumi, H. Lee, J. Choe, D. Lee, H.C. Shin, MCS Analysis of Westinghouse 3- Loop PWR Multi-Cycle Operation, Korean Nuclear Society Fall Meeting, Yeosu, Korea, 2018. October 25 - 26.
  22. Tung Dong Cao Nguyen, Hyunsuk Lee, Deokjung Lee, VERA Solutions by UNIST MC Code MCS, KNS Spring Meeting, Jeju, Korea, 2018. May 16-18.
  23. Tung Dong Cao Nguyen, Hyunsuk Lee, Jiwon Choe, Matthieu Lemaire, Deokjung Lee, APR-1400 Whole-Core Depletion Analysis with MCS. M&C2019, 2019. Oregon, USA, August 25-29.
  24. A. Khassenov, Generation of Windowed Multipole Library for On-The-Fly Doppler Broadening in UNIST In-House Monte Carlo Code (master's thesis), Ulsan National Institute of Science and Technology, Ulsan, 2018.
  25. J.A. Wash, et al., On-the-fly Doppler broadening of unresolved resonance region cross sections, Prog. Nucl. Energy 101 (2017) 444. https://doi.org/10.1016/j.pnucene.2017.05.032
  26. Hyunsuk Lee, Deokjung Lee, On-The-Fly Interpolation for Thermal Scattering in MCS, Transaction of KNS Spring Meeting, Jeju, Korea, 2018. May 16-18.
  27. M. Pusa, Rational approximations to the matrix exponential in burnup calculations, Nucl. Sci. Eng. 169 (2) (2011) 155. https://doi.org/10.13182/NSE10-81
  28. D. Lee, J. Rhodes, K. Smith, Quadratic depletion method for gadolinium isotopes in CASMO-5, Nucl. Sci. Eng. 174 (2013) 79. https://doi.org/10.13182/NSE12-20
  29. ASTM, Standard test method for atom percent fission in uranium and plutonium fuel (Neodymium-148 Method), Annu. Book ASTM (Am. Soc. Test. Mater.) Stand. 12 (1995) 91, 02(E321-79).
  30. OECD/NEA, State of the Art Report on Spent Nuclear Fuel Assay Data for Isotopic Validation, Organization for Economic Cooperation and Development, Nuclear Energy Agency, Nuclear Science Committee, Working Party on Nuclear Criticality Safety, 2011. Technical Report NEA/NSC/WPNCS/DOC(2011) 5.
  31. G. Ilas, I.C. Gauld, G. Radulescu, Validation of new depletion capabilities and ENDF/B-VII data libraries in SCALE, Ann. Nucl. Energy 46 (2012) 43. https://doi.org/10.1016/j.anucene.2012.03.012
  32. T. Yamamoto, T. Sakai, D. Iwahashi, Analysis of measured isotopic compositions by CASMO5 coupled with a JENDL-4.0 library for irradiated fuel of light water reactors, J. Nucl. Sci. Technol. 54 (3) (2017) 391.
  33. I.C. Gauld, G. Ilas, G. Radulescu, Uncertainties in Predicted Isotopic Compositions for High Burnup PWR Spent Nuclear Fuel, US Nuclear Regulatory Commission, 2011. Technical Report NUREG/CR-7012.
  34. H.J. Park, D.H. Lee, B.K. Jeon, H.J. Shim, Monte Carlo burnup and its uncertainty propagation analyses for VERA depletion benchmarks by McCARD, Nucl. Eng. Technol. 50 (2018) 1043. https://doi.org/10.1016/j.net.2018.06.003
  35. M. Tohjoh, T. Endo, M. Watanabe, A. Yamamoto, Effect of error propagation of nuclide number densities on Monte Carlo burn-up calculations, Ann. Nucl. Energy 33 (2006) 1424. https://doi.org/10.1016/j.anucene.2006.09.010
  36. M.D. DeHart, M.C. Brady, C.V. Parks, OECD/NEA Burnup Credit Calculational Criticality Benchmark Phase I-B Results, Oak Ridge National Laboratory, 1996. Technical Report ORNL/TM-6901.
  37. J.S. Martinez, O. Cabellos, C.J. Diez, F. Gilfillan, A. Barbas, Isotopic prediction calculation methodologies: application to Vandellos-II reactor cycles 7-11, in: CD Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering M&C 2011, 2011.

피인용 문헌

  1. Assessment of the Radiotoxicity of Spent Nuclear Fuel from a Fleet of PWR Reactors vol.14, pp.11, 2020, https://doi.org/10.3390/en14113094