DOI QR코드

DOI QR Code

소형 선박용 연료전지 시스템 모델 개발

Development of a Fuel Cell System Model for a Small Ship

  • 방은신 (한국해양대학교 대학원) ;
  • 김영민 (대우조선해양 기전시스템연구) ;
  • 김명환 (한국해양대학교 기관공학부) ;
  • 박상균 (한국해양대학교 해사IT공학부)
  • Bang, Eun-Shin (Graduate School, Korea Maritime & Ocean University) ;
  • Kim, Young-Min (Mechanical, Electric and Control System R&D Department, Naval & Energy Systems R&D Institute, Daewoo Shipbuilding & Marine Engineering Co., Ltd.,(DSME)) ;
  • Kim, Myoung-Hwan (Division of Marine Engineering, Korea Maritime & Ocean University) ;
  • Park, Sang-Kyun (Division of Marine Information Technology, Korea Maritime & Ocean University)
  • 투고 : 2020.06.12
  • 심사 : 2020.08.28
  • 발행 : 2020.08.31

초록

본 연구에서는 선박 전원용 연료전지 시스템 모델을 개발하여 순수한 산소를 공급하여 진행한 실험 결과의 비교를 통하여 연료전지 시스템 모델을 검증하였다. 검증된 모델을 활용하여 공기 압축기를 사용하여 공기를 공급할 경우에 대하여 산소를 공급한 경우와의 연료전지 출력 특성을 비교 검토하였다. 또한, 연료전지 시스템의 열물성치 변화가 스택의 출력에 어떠한 영향을 미치는지에 관하여 검토하였다. 그 결과 본 연구의 실험 범위에서 캐소드 공급 가스로 순수한 산소를 공급한 경우의 모델링을 통한 계산 결과와 실험 결과는 전 부하 영역에서 거의 동일한 전압 및 출력을 얻을 수 있었다. 560 A의 일정한 부하에서 캐소드 공급용 산소를 대신하여 공기를 공급한 경우 각각의 스택 전압은 약 14 V, 스택 출력은 약 8 kW, 스택 효율은 약 3 % 및 전체 시스템 효율은 8 % 정도 낮아짐을 알 수 있었다. 본 연구에서 검토한 열물성치 중에서 스택에 대한 냉각수의 열전달 계수가 스택의 출력에 가장 큰 영향을 미침을 알 수 있었다.

In this study, a fuel cell system model for ship power was developed and verified by comparing the experimental results obtained by supplying pure oxygen. To verify the proposed model, the fuel cell output characteristics when oxygen was supplied were compared with those when air was supplied using an air compressor. In addition, the effect of the change in the thermal properties of the fuel cell system on the output of the stack was examined. Within the experimental range of this study, when pure oxygen was supplied as the cathode supply gas, the calculated and experimental voltages and outputs obtained through modeling were almost the same over the entire load range. When air was supplied instead of oxygen for the cathode supply at a constant load of 560 A, each stack voltage was approximately 14 V, the stack output was approximately 8 kW, and the stack efficiency was approximately 3 %. It was confirmed that the overall system efficiency was reduced by approximately 8 %. Among the thermal properties examined in this study, the heat transfer coefficient of the coolant to the stack was found to have the greatest effect on the output of the stack.

키워드

참고문헌

  1. Choi, C. H., S. Yu, I. S. Han, B. K. Kho, D. G. Kang, H. Y. Lee, M. S Seo, J. W. Kong, G. Kim, J. W. Ahn, S. K. Park, D. W. Jang, J. H. Lee, and M. Kim(2016), Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat, International Journal of Hydrogen Energy, Vol. 41, No. 5, pp. 3591-3599. https://doi.org/10.1016/j.ijhydene.2015.12.186
  2. Decarbonising Maritime Transport(2018), Pathways to zero-carbon shipping by 2035, Case-Specific Policy Analysis, OECD/ITF
  3. e4ship project(2019), www.e4ships.de, Accessed September 02, 2019.
  4. EMSA European Maritime Safety Agency(2017), Study on the use of fuel cells in shipping, DNV GL.
  5. Energy observer project(2019), www.energy-observer.org, Accessed September 02, 2019.
  6. EUtech Scientific Engineering(2009), Simulation toolbox for the design and development of thermodynamic system in MATLAB/Simulink.
  7. Fontell, E.(2011), Wartsila Fuel Cell Development Program, The 8th annual Green Ship Technology Conference.
  8. Frank, P. I., P. D. David, L. B. Theodore, and S. L. Adrienne(2008), Fundamentals of Heat and Mass Transfer, 6th edition, John Wiley & Sons, Inc.
  9. IMO(2018), International Maritime Organization, Report of the Marine Environment Protection Committee on its 72nd Session
  10. Joseph, W. P. and E. K. Leonard(2016), Feasibility of the SF-BREEZE: a Zero-Emission, Hydrogen Fuel Cell, High-Speed Passenger Ferry, SANDIA REPORT.
  11. Joseph, W. P. and E. K. Leonard(2018), Optimization of Zero Emission Hydrogen Fuel Cell Ferry Design, With Comparisons to the SF-BREEZE, SANDIA REPORT.
  12. Kim J. I. and S. K. Park(2019), Development of a 120kW PEMFC stack model for a ship vessel, Journal of the Korean Society of Marine Engineering, Vol. 43, No. 7, pp. 492-497.
  13. Kim, M. H.(2007), Analysis on the technology R&D of the fuel cell systems for power generation in ships, Journal of the Korean Society of Marine Engineering, Vol. 31, No. 8, pp. 924-931. https://doi.org/10.5916/jkosme.2007.31.8.924
  14. Larminie, J. and A. Dicks(2003), Fuel Cell Systems Explained, John Wiley & Sons Ltd.
  15. Pukrushpan, J. T.(2003), Modeling and control of fuel cell systems and fuel processors, Ph.D. Dissertation, Mechanical Engineering, University of Michigan, USA.
  16. Pukrushpan, J. T., A. G. Stefanopoulou, and H. Peng(2005), Control of Fuel Cell Power System: Principles, Modeling, Analysis and Feedback Design, Springer.