DOI QR코드

DOI QR Code

Collapse Analysis of Ultimate Strength Considering the Heat Affected Zone of an Aluminum Stiffened Plate in a Catamaran

카타마란 알루미늄 보강판의 열영향부 효과를 고려한 최종강도 붕괴 해석

  • 김성준 (푸른중공업 연구소) ;
  • 서광철 (목포해양대학교 조선해양공학과) ;
  • 박주신 (삼성중공업 중앙연구소)
  • Received : 2020.05.13
  • Accepted : 2020.08.28
  • Published : 2020.08.31

Abstract

The use of high-strength aluminum alloys for ships and of shore structures has many benefits compared to carbon steels. Recently, high-strength aluminum alloys have been widely used in onshore and of shore industries, and they are widely used for the side shell structures of special-purpose ships. Their use in box girders of bridge structures and in the topside of fixed platforms is also becoming more widespread. Use of aluminum material can reduce fuel consumption by reducing the weight of the composite material through a weight composition ratio of 1/3 compared to carbon steel. The characteristics of the stress strain relationship of an aluminum structure are quite different from those of a steel structure, because of the influence of the welding[process heat affected zone (HAZ). The HAZ of aluminum is much wider than that of steel owing to its higher heat conductivity. In this study, by considering the HAZ generated by metal insert gas (MIG) welding, the buckling and final strength characteristics of an aluminum reinforcing plate against longitudinal compression loads were analyzed. MIG welding reduces both the buckling and ultimate strength, and the energy dissipation rate after initial yielding is high in the range of the HAZ being 15 mm, and then the difference is small when HAZ being 25 mm or more. Therefore, it is important to review and analyze the influence of the HAZ to estimate the structural behavior of the stiffened plate to which the aluminum alloy material is applied.

선박 및 해양구조물에서 사용하고 있는 고강도 알루미늄 합금들은 스틸과 비교해서 많은 이점을 가지고 있다. 최근 고강도 알루미늄 합금들은 육상 및 해양에 폭넓게 사용되고 있으며, 특히, 특수목적 선박의 선체 외판구조에 많이 이용되고 있고, 교량 구조물에 사용되는 상자 구조물, 그리고 고정식 해양플랫폼의 상부구조에서 소비율이 증가하고 있다. 알루미늄 재료는 스틸보다 1/3의 중량 구성비를 통하여, 구성 중량을 줄이게 하여 연비 절감을 가능하게 한다. 일반적인 강구조물의 응력-변형률 관계와 비교하면, 용접가공에 따라 발생하는 열영향부의 존재로 인하여 상당히 다르게 나타난다. 왜냐하면, 강구조물과 비교하면 열전도율이 높아서, 열영향부(heat affected zone, HAZ)가 남아 있어 구조 강도 저하를 가져온다. 본 논문에서는 MIG(Metal inert gas) 용접 때문에 발생하는 열영향부를 고려하고, 종방향 압축 하중에 대한 알루미늄 보강판의 좌굴 및 최종강도 특성을 분석하였다. MIG 용접에 따른 열영향부를 고려한 경우, 좌굴 및 최종강도 모두 감소하며, 열영향부의 범위가 15 mm부터 항복 이후 에너지 소실률이 크게 나타나며, 25 mm 이상부터는 그 차이가 크지 않다. 따라서, 알루미늄 합금재료를 적용한 보강판의 구조 거동을 파악하기 위해서는 열영향부 영향에 대한 검토 및 분석이 중요하다.

Keywords

References

  1. Aalberg, A., M. Langseth, and P. K. Larsen(2001), Stiffened aluminium panels subjected to axial compression, Thin-Walled Structures, Vol. 39, Issue 10, pp. 861-885. https://doi.org/10.1016/S0263-8231(01)00021-0
  2. ANSYS Multiphysics V.18(2016), ANSYS Classic documents, Nonlinear buckling and it's application, Chapter 3, Part 4, pp. 120-132.
  3. Baek, S. Y., K. D. Park, W. I. Kim, and S. M. Cho(2011), A Study on Tensile Properties and HAZ Softening Depending on the Amount of Heat Input in MIG Welding of AL6082-T6, Journal of Welding & Joining Vol. 29, No. 1, pp. 59-64 https://doi.org/10.5781/KWJS.2011.29.1.059
  4. BS EN 1999-1-1(2009), Eurocode 9: Design of aluminium structures, Part 1-1, General structural rules, pp. 33-37.
  5. Farajkhah, V. and Y. Liu(2016), Effect of metal insert gas welding on the behaviour and strength of aluminium stiffened plates, Marine Structures, Vol. 50, pp. 95-110. https://doi.org/10.1016/j.marstruc.2016.07.005
  6. GHI welding procedure specification(2018), MIG welding procedure specification for hull construction, Document ID. 4200-446-18, pp. 05-68.
  7. Khedmati, M. R., M. R. Zareei, and P. Rigo(2009), Sensitive analysis on the elastic buckling and ultimate strength of continous stiffened aluminium plates under combined in-plane compression and lateral pressure, Thin-Walled Structures, Vol. 47, No. 11, pp. 1232-1245. https://doi.org/10.1016/j.tws.2009.04.010
  8. Khedmati, M. R., M. R. Zareei, and P. Rigo(2010), Empirical formulations for estimation of ultimate strength of continous stiffened aluminium plates under combined in-plane compression and lateral pressure, Thin-Walled Structures, Vol. 48, No. 3, pp. 274-289. https://doi.org/10.1016/j.tws.2009.10.001
  9. Paik, J. K.(2007), Empirical formulations for predicting the ultimate compressive strength of welded aluminium stiffened panels, Thin-Walled Structures, Vol. 148, pp. 171-184. https://doi.org/10.1016/j.tws.2007.02.003
  10. Paik, J. K. and A. Duran(2004), Ultimate strength of aluminium plates and stiffened panels for marine applications, Marine Technology, Vol. 41, No. 3, pp. 108-121.
  11. Paik, J. K. and A. Duran(2006), Mechanical buckling collapse testing on aluminium stiffened plate structures for marine applications, World maritime technology conference, pp. 1-15.
  12. Paik, J. K., O. F. Hughes, and P. Rigo(2005), Ultimate Limit State Design Technology for Aluminium Multi-Hull Ship Structures, Transactions SNAME, Vol. 113, pp. 270-305.
  13. Pedram, M. and M. R. Khedmati(2014), The effect of welding on the strength of aluminium stiffened plates subjected to combined uniaxial compression and lateral pressure, International Journal of Naval Architecture Ocean Engineering, Vol. 6, Issue 1, pp. 39-59. https://doi.org/10.2478/IJNAOE-2013-0162
  14. Rigo, P., R. Sarghiuta, S. Estefen, E. Lehmann, S. C. Otelea, I. Pasqualino, B. C. Simonsen, Z. Wand, and T. Yao(2003), Sensitive analysis on ultimate strength of aluminium stiffened panels, Marine Structures, Vol. 16, No. 6, pp. 437-468. https://doi.org/10.1016/j.marstruc.2003.09.002
  15. Zha, Y. and T. Moan(2003), Experimental and numerical prediction of collapse of flatbar stiffeners in aluminium panels, Journal of Structural Engineering, Vol. 129, No. 2, pp. 160-168. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(160)