DOI QR코드

DOI QR Code

하계 한반도 해역(동해, 서해, 남해 및 동중국해)의 하위영양단계 먹이망 구조 : 탄소 및 질소 안정동위원소 활용

Food-Web Structures in the Lower Trophic Levels of the Korean Seas (East Sea, West Sea, South Sea, and East China Sea) during the Summer Season: Using Carbon and Nitrogen Stable Isotopes

  • Min, Jun-Oh (Department of Marine Science and Convergence Engineering Hanyang University) ;
  • Lee, Chang-Hwa (Department of Oceanography, Pusan National University) ;
  • Youn, Seok-Hyun (Oceanic climate and Ecology Research Division, National Institute of Fisheries Science)
  • 투고 : 2020.06.12
  • 심사 : 2020.08.28
  • 발행 : 2020.08.31

초록

본 연구는 2019년 8월 한반도 주변해역(동해, 서해, 남해, 동중국해)에서 탄소 및 질소 안정동위원소 기법을 활용하여 하위영양 단계에서의 먹이망 구조를 파악하였다. 입자성 유기물(POM)의 δ13C 범위는 -26.18 ~ 20.61 ‰, δ15N 범위는 5.36 ~ 15.20 ‰의 넓은 범위를 보였다. POM과 각 생물별 개체군 사이의 δ13C 분별작용의 결과는 대부분 micro-POM을 섭식하는 것으로 확인하였으나 해역 간 차이를 보였다. 각 생물별 영양단계는 chaetognaths (3.40±0.61)가 가장 높은 영양단계에 있음을 확인하였다. 동위원소 혼합모델을 적용한 결과에서 chaetognaths의 먹이원으로 copepods (13 ~ 48 %)와 euphausiids (20 ~ 51 %)가 가장 높은 기여도를 나타냈다. 본 연구결과 각 해역별 먹이원의 제한적 공급 및 다양성의 차이가 먹이망 구조 및 각 생물별 동위원소 비에 영향을 미친 것으로 판단된다.

Food web structures in the lower trophic levels of the seas around the Korean peninsula were investigated in August 2019 using stable isotopes. There were variable ratios of the carbon (-26.18 ~ -20.61 ‰) and nitrogen stable (5.36 ~ 15.20 ‰) isotopes in the particulate organic matter (POM). Most of the organisms ingested micro-POM as a major food source, but this varied spatially. The chaetognaths (3.40 ± 0.61) occupied the highest trophic level. The isotope mixing model showed that the proportions (13 ~ 51 %) of some organisms (i.e., copepods and euphausiids) reflected the relative contributions as major food sources for chaetognaths at each site.

키워드

참고문헌

  1. Chang, K. H., D. I. Seo, S. M. Masaki Sakamoto, G. S. Nam, J. Y. Choi, M. S. Kim, K. S. Jeong, G. H. La, and H. W. Kim(2016), Feeding Behavior of Crustaceans (Cladocera, Copepoda and Ostracoda): Food Selection Measured by Stable Isotope Analysis Using R Package SIAR in Mesocosm Experiment, Korean Journal of Ecology and Environment, Vol. 49, No. 4, pp. 279-288. https://doi.org/10.11614/KSL.2016.49.4.279
  2. Choi, K. H., C. I. Lee, K. S. Hwang, S. W. Kim, J. H. Park, and Y. Gong(2008), Distribution and migration of Japanese common squid, Todarodes pacificus, in the southwestern part of the East (Japan) Sea, Fisheries Research, Vol. 91, No. 2-3, pp. 281-290. https://doi.org/10.1016/j.fishres.2007.12.009
  3. Choo, H. S. and D. S. Kim(1998), The effect of variations in the Tsushima warm currents on the egg and larval transport of anchovy in the Southern Sea of Korea, Korean Journal of Fisheries and Aquatic Sciences, Vol. 31, No. 2, pp. 226-244.
  4. Cifuentes, L. A., J. H. Sharp, and M. L. Fogel(1988), Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary, Limnology and Oceanography, Vol. 33, pp. 1102-1115. https://doi.org/10.4319/lo.1988.33.5.1102
  5. DeNiro, M. J. and S. Epstein(1977), Mechanism of carbon isotope fractionation associated with lipid synthesis, Science, Vol. 197, pp. 261-263. https://doi.org/10.1126/science.327543
  6. Dickman, E. M., J. M. Newell, M. J. Gonzalez, and M. J. Vanni(2008), Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels, Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, No. 47, pp. 18408-18412. https://doi.org/10.1073/pnas.0805566105
  7. Eom, H. K., H. S. Kim, I. S. Han, and D. H. Kim(2015) An Analysis of Changes in Catch Amount of Offshore and Coastal Fisheries by Climate Change in Korea, Journal of Fisheries Business Administration, Vol. 46, No. 2, pp. 31-41. https://doi.org/10.12939/FBA.2015.46.2.031
  8. Feigenbaum, D. L.(1991), Food and feeding behaviour. In: Barker GM (ed) The biology of terrestrial molluscs. Oxford University Press, Oxford, pp. 259-288.
  9. Frank, K., T., B. Petrie, J. S. Choi, and W. C. Leggett(2005), Trophic cascades in a formerly cod-dominated ecosystem, Science, Vol. 308, pp. 1621-1623. https://doi.org/10.1126/science.1113075
  10. Fry, B.(1999), Using stable isotopes to monitor watershed influences on aquatic trophodynamics, Canadian Journal of Fisheries and Aquatic Science, Vol. 56, pp. 2167-2171. https://doi.org/10.1139/f99-152
  11. Gal, J. G., M. S. Kim, Y. J. Lee, J. W. Seo, and K. H. Shin(2012), Foodweb of aquatic ecosystem within the Tamjin river through the determination of carbon and nitrogen stable isotope ratios, Korean Journal of Limnological Society, Vol. 45, No. 2, pp. 242-251.
  12. Ha, S. Y., W. K. Min, D. S. Kim, and K. H. Shin(2014), Trophic importance of meiofauna to polychaetes in a seagrass (Zostera marina) bed as traced by stable isotopes, Journal of Marine Biological Association of the United Kingdom, Vol. 94, No. 1, pp. 121-127. https://doi.org/10.1017/S0025315413001148
  13. Harris, R., P. Wiebe, J. Lenz, H. R. Skjoldal, and M. Huntley(2000), ICES zooplankton methodology manual. Academic Press, San Diego, p. 684.
  14. Hopkins, T. L.(1985), Food web of an Antarctic midwater ecosystem, Marine Biology, Vol. 89, pp. 197-212. https://doi.org/10.1007/BF00392890
  15. Im, D. H. and H. L. Suh(2016), Ontogenetic feeding migration of the euphausiid Euphausia pacifica in the East Sea (Japan Sea) in autumn: a stable isotope approach, Journal of Plankton Research, Vol. 38, No. 4, pp. 904-914. https://doi.org/10.1093/plankt/fbw041
  16. Im, D. H., J. H. Wi, and H. L Suh(2015), Evidence for ontogenetic feeding strategies in four calanoid copepods in the East Sea (Japan Sea) in summer, revealed by stable isotope analysis, Ocean Science Journal, Vol. 50, pp. 481-490. https://doi.org/10.1007/s12601-015-0044-y
  17. Ju, S. J., A. R. Ko, and C. R. Lee(2011), Latitudinal Variation of Nutritional Condition and Diet for Copepod Species, Euchaeta sp. and Pleuromamma spp., from the Northwest Pacific Ocean Using Lipid Biomarkers, Ocean and Polar Research, Vol. 33, No. 3, pp. 349-358. https://doi.org/10.4217/OPR.2011.33.3.349
  18. Kang, Y. H., S. J. Ju, and Y. G. Park(2012), Predicting Impacts of Climate Change on Sinjido Marine Food Web, Ocean and Polar Research, Vol. 34, No. 2, pp. 239-251. https://doi.org/10.4217/OPR.2012.34.2.239
  19. Kim, H. J., S. J. Ju, J. H. Kang, and K. H. Shin(2019), Diet source of Euphausia pacifica revealed using carbon- and nitrogen-stable isotopes in the Yellow Sea Cold Water Mass in summer, Journal of Oceanography, Vol. 75, No. 1, pp. 51-59. https://doi.org/10.1007/s10872-018-0483-z
  20. Kim, H. S., S. J. Ju, and A. R. Ko(2010), Comparisons of Feeding Ecology of Euphausia pacifica from Korean Waters Using Lipid Composition, Ocean and Polar Research, Vol. 32, No. 2, pp. 165-175. https://doi.org/10.4217/OPR.2010.32.2.165
  21. Kim, M. S., J. Y. Hwang, O. S. Kwon, and W. S. Lee(2013), Analytical Methodology of Stable Isotopes Ratios: Sample Pretreatment, Analysis and Application. Korean Journal of Limnological Society, Vol. 46, No. 4, pp. 471-487.
  22. Kim, S. H. and I. C. Pang(2005), Distribution and characteristic of Transport mechanism of eggs and larvae of anchovy, Engraulis japonica, in the Southwestern Sea of Korea in July and November, 2001, Korean Journal of Fisheries and Aquatic Sciences, Vol. 38, No. 5, pp. 331-341. https://doi.org/10.5657/kfas.2005.38.5.331
  23. Kline, T. C. Jr. and T. M. Willette(2002), Pacific salmon (Oncorhynchus spp.) early marine feeding patterns based on ^{15}N/^{14}N and $^{13}C/^{12}C$ in Prince William Sound, Alaska, Canadian Journal of Fisheries and Aquatic Science, Vol. 59, pp. 1626-1638. https://doi.org/10.1139/f02-126
  24. Kortsch, S., R. Primicerio, M. Fossheim, A. V. Dolgov, and M. Aschan(2015), Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists, Proceedings of The Royal Society B, Vol. 282, p. 20151546. https://doi.org/10.1098/rspb.2015.1546
  25. Krumins, J. A., D. van Oevelen, T. M. Bezemer, G. B. de Deyn, W. H. G. Hol, E. van Donk, and W. H. van der Putten(2013), Soil and freshwater and marine sediment food webs: their structure and function. Bioscience. Vol. 63, No. 1, pp. 35-42. https://doi.org/10.1525/bio.2013.63.1.8
  26. Lee, B. K. and S. Y. Kim(2007), Sedimentary facies and processes in the Ulleung Basin and southern East Sea, Korean Journal of Fisheries and Aquatic Sciences, Vol. 40, No. 3, pp. 160-166. https://doi.org/10.5657/kfas.2007.40.3.160
  27. Lu, H. J. and H. L. Lee(2014), Changes in the fish species composition in the coastal zones of the Kuroshio Current and China Coastal Current during periods of climate change: Observations from the set-net fishery (1993-2011), Fisheries research, Vol. 155, pp. 103-113. https://doi.org/10.1016/j.fishres.2014.02.032
  28. Mauchline, J.(1998), The biology of calanoid copepods, Advance in Marine Biology, Vol. 33, pp. 1-710. https://doi.org/10.1016/S0065-2881(08)60234-5
  29. McCutchan, J. H, W. M Lewis, C. Kendall, and C. C. McGrath(2003), Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur, Oikos, Vol. 102, pp. 378-390. https://doi.org/10.1034/j.1600-0706.2003.12098.x
  30. Meyers, P. A.(1997), Organic geochemical proxies. Organic Geo-chemistry, Vol. 27, pp. 213-250. https://doi.org/10.1016/S0146-6380(97)00049-1
  31. Michener, R. H. and L. Kaufman(2007), Stable isotope ratios as tracers in marine food webs: an update. In: Stable Isotopes in Ecology and Environmental Science, 2ed, Oxford. Wiley-Blackwell, pp. 238-282.
  32. Minagawa, M. and E. Wada(1984), Stepwise enrichment of $^{15}N$ along food chains: further evidence and the relation between ${\delta}^{15}N$ and animal age, Geochimica et Cosmochimica Acta, Vol. 48, pp. 1135-1140. https://doi.org/10.1016/0016-7037(84)90204-7
  33. Nybakken J. W. and M. D. Bertness(2005), Marine biology: An Ecological Approach, 6ed, Benjamin Cummings, San Francisco, pp. 151-152.
  34. Ohman, M. D.(1984), Omnivory by Euphausia pacifica: the role of copepod prey, Marine Ecology Progress Series, Vol. 19, pp. 125-131. https://doi.org/10.3354/meps019125
  35. Park, J. I., C. K. Kang, and H. L. Suh(2011), Ontogenetic diet shift in the euphausiid Euphausia pacifica quantified using stable isotope analysis, Marine Ecology Progress Series, Vol. 429, pp. 103-109. https://doi.org/10.3354/meps09091
  36. Parnell, A., R. Inger, S. Bearhop, and A. L. Jackson(2010), Source partitioning using stable isotopes: coping with too much variation, PLOS One, Vol. 5, p. e9672. https://doi.org/10.1371/journal.pone.0009672
  37. Post, D. M.(2002a), The long and short of food-chain length. Trends Ecology & Evolution, Vol. 17, pp. 269-277. https://doi.org/10.1016/S0169-5347(02)02455-2
  38. Post, D. M.(2002b), Using stable isotopes to estimate trophic position: models, methods, and assumptions, Ecology, Vol. 83, pp. 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
  39. Rau, G. H., J. L. Teyssie, F. Rassoulzadegan, and S. W. Fowler(1990), $^{13}C/^{12}C $and $^{15}N/^{14}N$ variations among size-fractionated marine particles: implications for their origin and trophic relationships, Marine Ecology Progress Series, Vol. 59, pp. 33-38. https://doi.org/10.3354/meps059033
  40. Sato, T., T. Miyajima, H. Ogawa, Y. Umezawa, and I. Koike(2006), Temporal variability of stable carbon and nitrogen isotopic composition of size-fractionated particulate organic matter in the hypertrophic Sumida River estuary of Tokyo Bay, Japan, Estuarine, Coastal and Shelf Science, Vol. 68, pp. 245-258. https://doi.org/10.1016/j.ecss.2006.02.007
  41. Schuckel, U., I. Kroncke, and D. Baird(2015), Linking long-term changes in trophic structure and function of an intertidal macrobenthic system to eutrophication and climate change using ecological network analysis. Marine Ecology Progress Series, Vol. 526, pp. 25-38. https://doi.org/10.3354/meps11391
  42. Suh, H. L. and S. D. Choi(1998), Comparative morphology of the feeding basket of five species of Euphausia (Crustacea, Euphausiacea) in the western North Pacific, with some ecological consideration, Hydrobiologia, Vol. 385, pp. 107-112. https://doi.org/10.1023/A:1003435622123
  43. Sweeting, C. J., N. V. C. Polunin, and S. Jennings(2006), Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues, Rapid Communication in Mass Spectrometry, Vol. 20, pp. 595-601. https://doi.org/10.1002/rcm.2347
  44. Tang, Q.(2003), The Yellow Sea LME and mitigation action. In: Hempel G, Sherman K (eds) Large marine ecosystems of the world-trends in exploitation, protection and research. Elsevier BV, Amsterdam, pp. 121-144.
  45. Thayer, G. W., K. A. Bjorndal, J. C. ogden, S. L. Williams, and J. C. Zieman(1984), Role of larger herbivores in seagrass communities, Estuaries, Vol. 7, pp. 351-376. https://doi.org/10.2307/1351619
  46. Vargas, C. A., R. A. Martinez, H. E. Gonzalez, and N. Silva(2008), Contrasting trophic interactions of microbial and copepod communities in a fjord ecosystem, Chilean Patagonia. Aquatic Microbial Ecology, Vol. 53, pp. 227-242. https://doi.org/10.3354/ame01242
  47. Yoon, H. J., A. R. Ko, J. H. Kang, J. K. Choi, and S. J. Ju(2016), Diet of Chaetognaths Sagitta crassa and S. nagae in the Yellow Sea Inferred from Gut Content and Fatty Acid Analyses, Ocean and Polar Research, Vol. 38, No. 1, pp. 35-46. https://doi.org/10.4217/OPR.2016.38.1.035
  48. Yoon, J. H. and Y. U. Kim(2009), Review on the seasonal variation of the surface circulation in the Japan/East Sea. Journal of Marine Systems, Vo. 78, No. 2, pp. 197-211.
  49. Zhang, B., Q. S. Tang, X. S. Jin, and Y. Xue(2005), Feeding competition of the major fish in the East China Sea and the Yellow Sea, Current Zoology, Vol. 51, No. 4, pp. 616-623.