DOI QR코드

DOI QR Code

혼합 탄화수소계 초임계 상태 연료의 액적 거동 가시화

Visualization of Supercritical Mixed Hydrocarbon-Fuel Droplet

  • Song, Juyeon (Graduate School, Korea Aerospace University) ;
  • Song, Wooseok (Graduate School, Korea Aerospace University) ;
  • Koo, Jaye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2020.07.06
  • 심사 : 2020.08.25
  • 발행 : 2020.09.01

초록

탄화수소계열 연료를 기반으로 혼합모사추진제를 사용하여 액적을 생성하고 열에너지를 가하면서 초임계 환경으로 분무되는 거동을 가시화하였다. 혼합모사추진제는 임계압력과 임계온도가 상이한 데칸과 메틸사이클로헥산을 선정하였다. 초임계 환경으로 분무되는 유동은 Rayleigh 분열로 액적을 생성하며 Oh 수와 Re 수를 구하여 Rayleigh 분열영역임을 확인하였다. 혼합모사추진제의 온도는 Tr=0.49에서 Tr=1.34까지 변화를 주었다. 유량은 0.7~0.8 g/s로 유지하였다. 액적은 열에너지를 가할수록 분열 길이가 짧아지며 덩어리진 형태로 떨어진다. 액체 상을 가시화하는 장치에서 2차 액적(second droplet)이 형성되는 것을 확인하였고 Tr=1.34일 때 부분적으로 불안정한 상태의 초임계 상태로 액상이 보이지 않는다.

Injection visualization of heated mixed simulant droplets based on hydrocarbon fuel was performed under supercritical state environment. Mixed simulant consisted of Decane and Methylcyclohexane with different critical pressure and critical temperature. Flows injected into the supercritical state environment created droplet by Rayleigh breakup mechanism, and the Oh number and Re number were determined to confirm the breakup area. The temperature of the mixed simulant varied from Tr=0.49 to Tr=1.34. The flow rate was maintained at 0.7 to 0.8 g/s. Droplet became shorter in breakup length as heated and into a lumped form. Second droplet was formed and when Tr=1.34, the phase was not visible in the supercritical state with local unsteady flow.

키워드

참고문헌

  1. Yang, V., Nienchuan, N. and Shuen, J. S., "Vaporization of liquid oxygen (LOX) droplets in supercritical hydrogen environments," Combustion Science and Technology, Vol. 97, Issue 4-6, 1994, pp. 247-270. https://doi.org/10.1080/00102209408935380
  2. Segal, C. and Polikhov, S. A., "Subcritical to supercritical mixing," Physics of Fluids, Vol. 20, Issue 5, 2008, 052101. https://doi.org/10.1063/1.2912055
  3. Wang, N., Zhou, J., Pan, Y. and Wang, H., "Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures," Acta Astronautica, Vol. 94, No. 2, 2014, pp. 834-842. https://doi.org/10.1016/j.actaastro.2013.10.008
  4. Mayer, W., Telar, J., Brannam, R. and Schneider, G., "Characterization of Cryogenic Injection at Supercritical Pressure," Proceeding of the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 2001.
  5. Mayer, W., Schik, A., Schweitzer, C. and Schaffler, M., "Injection and Mixing Processes in High Pressure LOX/GH2 Rocket Combustors," Proceeding of the 32nd Joint Propulsion Conference and Exhibit, July 1996.
  6. Smith, J., Klimenko, D., Clau, W. and Mayer, W., "Supercritical LOX/Hydrogen Rocket Combustion Investigations Using Optical Diagnostics," Proceeding of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 2002.
  7. Deposit formation in Hydrocarbon Rocket Fuels-Executive Summary Report, NASA Contractor Report 165492.
  8. Zhong, F. Q., Fan, X. J., Wang, J., Yu, G. and Li, J. G., "Characteristics of Compressible Flow Of Supercritical Kerosene," Acta Mechanica Sinica, Vol. 28, No. 1, 2012, pp. 8-13. https://doi.org/10.1007/s10409-012-0006-x
  9. Roback, R., Szetela, E. J. and Spadaccini, L. J., "Deposit formation in hydrocarbon rocket fuels," 1981.
  10. Engelmeier, L., Pollak, S. and Weidner, E., "Investigation of superheated liquid carbon dioxide jets for cutting applications," The Journal of Supercritical Fluids, Vol. 132, 2018, pp. 33-41. https://doi.org/10.1016/j.supflu.2017.01.008
  11. Xu, K. and Meng, H., "Analyses of surrogate models for calculating thermophysical properties of aviation kerosene RP-3 at supercritical pressures," Science China Technological Sciences, 2015, Vol. 58, No. 3, pp. 510-518. https://doi.org/10.1007/s11431-014-5752-5
  12. Yang, J. C., Chien, W. and King, M., Grosshandler, W. L., "A simple piezoelectric droplet generator," Experiments in fluids, Vol. 23, No. 5, 1997, pp. 445-447. https://doi.org/10.1007/s003480050134
  13. Huber, M. L., Nist Thermophysical Properties of Hydrocarbon Mixtures Database (SUPERTRAPP) Version 3.2 Users' Guide, NIST, 2007.
  14. Mitts, C., Talley, D. and Poulikakos, D., "A fundamental study of supercritical droplet deformation and breakup through a miscible fluid analog," American Institute of Aeronautics and Astronautics, 1996, p. 2858.
  15. Delteil, J., Vincent, S., Erriguible, A. and Subra-Paternault, P. "Numerical investigations in Rayleigh breakup of round liquid jets with VOF methods," Computers & Fluids, 2011, Vol. 50, No. 1, pp. 10-23. https://doi.org/10.1016/j.compfluid.2011.05.010
  16. Ohnesorge, W. V., "Die building von tropfen an dusen und die auflosung flussiger strahlen," ("Formation of Drops by Nozzles and the Breakup of Liquid Jets") ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 16, No. 6, 1936, pp. 355-358. https://doi.org/10.1002/zamm.19360160611
  17. Miesse, C. C., "Correlation of experimental data on the disintegration of liquid jets," Industrial and Engineering Chemistry, Vol. 47, No. 9, 1955, pp. 1690-1701. https://doi.org/10.1021/ie50549a013
  18. Reitz, R. D., "Mechanism of breakup of round liquid jets," Encyclopedia of fluid mechanics, October 1986.