DOI QR코드

DOI QR Code

Analysis of the hematopoiesis process in mammalian bone using homotopy perturbation method

  • Akano, Theddeus T. (Department of Systems Engineering, University of Lagos) ;
  • Nwoye, Ephraim O. (Department of Biomedical Engineering, University of Lagos) ;
  • Adeyemi, Segun (Department of Systems Engineering, University of Lagos)
  • Received : 2019.06.04
  • Accepted : 2020.08.18
  • Published : 2020.03.25

Abstract

In this study, the mathematical model that describes blood cell development in the bone marrow (i.e., hematopoiesis) has been studied via the Homotopy Perturbation Method (HPM). The results from the present work compared very well with the numerical solutions from published literature. This work has shown that the HPM is viable for solving delay differential equations born from hematopoiesis problem. The influence of the proliferating cells loss rate, time delay rate and the phase re-entry rate on the population densities of both the proliferating and resting cells were also determined through the underlined procedure.

Keywords

References

  1. Adamu, M. Y. and Ogenyi, P. (2017), "Parameterized homotopy perturbation method", Nonlinear Sci. Lett. A, 8(2), 240-243.
  2. Adimy, M., Crauste, F. and Ruan, S. (2005a), "A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia", SIAM J. Appl. Math., 65(4), 1328-1352. https://doi.org/10.1137/040604698.
  3. Adimy, M., Crauste, F. and Ruan, S. (2005b), "Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics", Nonlinear Anal. Real World Appl., 6(4), 651-670. https://doi.org/10.1016/j.nonrwa.2004.12.010.
  4. An der Heiden, U. and Mackey, M.C. (1982), "The dynamics of production and destruction: analytic insight into complex behavior", J. Math. Biol., 16(1), 75-101. https://doi.org/10.1007/BF00275162.
  5. Angelucci, E., Matthes-Martin, S., Baronciani, D., Bernaudin, F., Bonanomi, S., Cappellini, M.D., Dalle, J.H., Di Bartolomeo, P., de Heredia, C.D., Dickerhoff, R., Giardini, C., Gluckman, E., Hussein, A.A., Kamani, N., Minkov, M., Locatelli, F., Rocha, V., Sedlacek, P., Smiers, F., Thuret, F., Yaniv, I., Cavazzana, M. and Peters, C. (2014). "Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel", Haematologica, 99(5), 811-820. https://doi.org/10.3324/haematol.2013.099747.
  6. Banerjee, U., Girard, J.R., Goins, L.M. and Spratford, C.M. (2019), "Drosophila as a genetic model for hematopoiesis", Genetics, 211(2), 367-417. https://doi.org/10.1534/genetics.118.300223.
  7. Belair, J., Mackey, M.C. and Mahaffy, J.M. (1995), "Age-structured and two-delay models for erythropoiesis", Math. Biosci., 128(1-2), 317-346. https://doi.org/10.1016/0025-5564(94)00078-E.
  8. Crauste, F. (2014), "Equations a retard et modeles de dynamiques de populations cellulaires", Ph.D. Dissertation, Universite Claude Bernard Lyon 1, Lyon.
  9. Cullen, S.M., Mayle, A., Rossi, L. and Goodell, M.A. (2014), "Hematopoietic stem cell development: an epigenetic journey", Curr. Top. Dev. Biol., 107, 39-75. https://doi.org/10.1016/B978-0-12-416022-4.00002-0.
  10. Cveticanin, L. (2006), "Homotopy-perturbation method for pure nonlinear differential equation", Chaos Solitons Fractals, 30(5), 1221-1230. https://doi.org/10.1016/J.CHAOS.2005.08.180.
  11. Dehghan, M. and Shakeri, F. (2007), "Solution of a partial differential equation subject to temperature overspecification by He's homotopy perturbation method", Phys. Scr., 75(6), 778. https://doi.org/10.1088/0031-8949/75/6/007.
  12. Dehghan, M. and Shakeri, F. (2008a), "Solution of an integro-differential equation arising in oscillating magnetic fields using He's homotopy perturbation method", Electromagn Waves (Camb), 78, 361-376. https://doi.org/10.2528/PIER07090403.
  13. Dehghan, M. and Shakeri, F. (2008b), "Use of He's homotopy perturbation method for solving a partial differential equation arising in modeling of flow in porous media", J. Porous Media, 11(8) 765-778. https://doi.org/10.1615/JPorMedia.v11.i8.50.
  14. El-Dib, Y.O. (2017), "Multiple scales homotopy perturbation method for nonlinear oscillators", Nonlinear Sci. Lett. A, 8(4), 352-364.
  15. Ganji, D.D. and Rafei, M. (2006), "Solitary wave solutions for a generalized Hirota-Satsuma coupled KdV equation by homotopy perturbation method", Phys. Lett. A, 356(2), 131-137. https://doi.org/10.1016/J.PHYSLETA.2006.03.039.
  16. Ganji, D.D. and Sadighi, A. (2006), "Application of He's homotopy-perturbation method to nonlinear coupled systems of reaction-diffusion equations", Int. J. Nonlinear Sci. Numer. Simul., 7(4), 411-418. https://doi.org/10.1515/IJNSNS.2006.7.4.411.
  17. Ganji, D.D. and Sadighi, A. (2007), "Application of homotopy-perturbation and variational iteration methods to nonlinear heat transfer and porous media equations", J. Comput. Appl. Math., 207(1), 24-34. https://doi.org/10.1016/J.CAM.2006.07.030.
  18. He, J.H. (1999), "Homotopy perturbation technique", Comput. Methods Appl. Mech. Eng., 178(3), 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3.
  19. He, J.H. (2005), "Application of homotopy perturbation method to nonlinear wave equations", Chaos Solitons Fractals, 26(3), 695-700. https://doi.org/10.1016/J.CHAOS.2005.03.006.
  20. He, J.H. (2006), "Addendum: new interpretation of homotopy perturbation method", Int. J. Mod. Phys. B, 20(18), 2561-2568. https://doi.org/10.1142/S0217979206034819.
  21. He, J.H. (2014), "Homotopy perturbation method with two expanding parameters", Indian J. Phys., 88(2), 193-196. https://doi.org/10.1007/s12648-013-0378-1.
  22. He, J.H. (2012a), "Asymptotic methods for solitary solutions and compactons", Abstr. Appl. Anal., 2012, 916793. https://doi.org/10.1155/2012/916793.
  23. He, J.H. (2012b), "Homotopy perturbation method with an auxiliary term", Abstr. Appl. Anal, 2012, 857612. https://doi.org/10.1155/2012/857612.
  24. Kumar, A., D'Souza, S.S. and Thakur, A.S. (2019), "Understanding the journey of human hematopoietic stem cell development", Stem Cells Int., 2019, 2141475. https://doi.org/10.1155/2019/2141475.
  25. Laurenti, E. and Gottgens, B. (2018), "From haematopoietic stem cells to complex differentiation landscapes", Nature, 553(7689), 418-426. https://doi.org/10.1038/nature25022.
  26. Mackey, M.C. (1978), "Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis", Blood, 51(5), 941-956. https://doi.org/10.1182/blood.v51.5.941.941
  27. Mikkola, H.K.A. and Orkin, S.H. (2006), "The journey of developing hematopoietic stem cells", Development, 133(19), 3733-3744. https://doi.org/10.1242/dev.02568.
  28. Nooney, G.C. (1967), "Age distributions in dividing populations", Biophys. J., 7(1), 69-76. https://doi.org/10.1016/S0006-3495(67)86575-5
  29. Notta, F., Zandi, S., Takayama, N., Dobson, S., Gan, O.I., Wilson, G., Kaufmann, K.B., McLeod, J., Laurenti, E. and Dunant, C.F. (2016), "Distinct routes of lineage development reshape the human blood hierarchy across ontogeny", Science, 351(6269), aab2116. https://doi.org/10.1126/science.aab2116.
  30. Pujo-Menjouet, L. and Mackey, M.C. (2004), "Contribution to the study of periodic chronic myelogenous leukemia", C. R. Biol., 327(3), 235-244. https://doi.org/10.1016/j.crvi.2003.05.004.
  31. Rafei, M., Ganji, D.D. and Daniali, H. (2007), "Solution of the epidemic model by homotopy perturbation method", Appl. Math. Comput., 187(2), 1056-1062. https://doi.org/10.1016/j.amc.2006.09.019.
  32. Salem, H.K. and Thiemermann, C. (2010), "Mesenchymal stromal cells: Current understanding and clinical status", Stem Cells, 28(3), 585-596. https://doi.org/10.1002/stem.269.
  33. Stem cells: Sources, types and uses. (2019), https://www.medicalnewstoday.com/articles/323343.php.
  34. Tomasetti, C. and Vogelstein, B. (2015), "Variation in cancer risk among tissues can be explained by the number of stem cell divisions", Science, 347(6217), 78-81. https://doi.org/10.1126/science.1260825.
  35. Varn, F.S., Andrews, E.H. and Cheng, C. (2015), "Systematic analysis of hematopoietic gene expression profiles for prognostic prediction in acute myeloid leukemia", Sci. Rep., 5, 16987. https://doi.org/10.1038/srep16987.
  36. Wang, Q. (2008), "Homotopy perturbation method for fractional KdV-Burgers equation", Chaos Solitons Fractals, 35(5), 843-850. https://doi.org/10.1016/J.CHAOS.2006.05.074.
  37. Wu, Y. and He, J.H. (2018), "Homotopy perturbation method for nonlinear oscillators with coordinatedependent mass", Results Phys., 10, 270-271. http://dx.doi.org/10.1016/j.rinp.2018.06.015.