DOI QR코드

DOI QR Code

An Investigation into the Release of Chemical Oxygen Demand in Organic Filter Media

유기성 여재로부터 화학적 산소요구량 물질의 방출에 관한 연구

  • Guerra, Heidi B. (Department of Environmental Engineering, Hanseo University) ;
  • Kim, Youngchul (Department of Environmental Engineering, Hanseo University)
  • Received : 2020.05.03
  • Accepted : 2020.05.27
  • Published : 2020.08.31

Abstract

To improve the nitrogen reduction capability of stormwater treatment systems subjected to intermittent saturation, organic materials are often added as filter media. However, these materials can be an additional source of organic carbon and increase the chemical oxygen demand (COD) in the outflow. In this study, different types of organic filter media were subjected to a batch leaching test to observe and quantify the release of COD. Results reveal that the initial pH of the tap water used for soaking which is 7.5-7.7 is conducive to the release of organics from the media to the leachate. The highest amount of COD released was observed in yard clippings and woodchip followed by compost and bark mulch. The leaching of organics also increased as the size of the media decreases due to higher surface area per volume. In addition, empirical regression analysis predicted that COD from these organic media will be exhausted from the material in 3-5 months to up to 26 months depending on the type of media. The results of this study can serve as a guide in estimating the potential release of COD in organic media in order to ensure their safe application in stormwater treatment facilities.

강우시에 주기적으로 포화상태에 이르는 강우 유출수 처리시스템에 의한 질소저감 능력을 향상시키기 위하여 유기성 여재가 널리 적용되고 있다. 그러나 이와 같은 물질은 추가적인 유기탄소원이 되기도 하지만 처리수의 COD를 증가시키는 원인이 되기도 한다. 본 연구에서는 여러 가지 형태의 유기성 여재의 회분식 용출시험을 통하여 COD 방출량을 정량화하고자 하였다. 연구결과에 따르면 초기 pH가 7.5-7.7인 수돗물 수준에서 쉽게 유기물질이 용출되는 것으로 나타났다. COD 방출이 가장 큰 여재는 노지 벌초물(yard clipping)과 우드칩이었으며 다음으로 퇴비와 목피 순서로 나타났다. 또한 여재의 크기가 작으면 작을수록 비표면적의 증가로 인하여 방출량이 증가하였다. 연구결과로부터 도출된 경험적인 공식에 따르면 유기성 여재로부터 COD 방출은 여재형태에 따라 3-5개월에서 길게는 26개월이 지속되는 것으로 예측되었다. 이와 같은 연구결과는 강우유출수 처리시설에서 유기성 여재의 안전한 적용을 위한 잠재적인 COD 물질의 방출량을 계산하는데 기여할 것으로 사료된다.

Keywords

References

  1. APHA, AWWA, and WEF (1998). Standard Methods for the Examination of Water and Wastewater, twentieth ed, American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC.
  2. Cokgor, EU, Oktay, S, Tas, DO, Zengin, GE, and Orhon, D (2009). Influence of pH and temperature on soluble substrate generation with primary sludge fermentation, Bioresour. Technol., 100(1), pp. 380-386. [DOI:10.1016/j.biortech.2008.05.025]
  3. Comans, RNJ, Roskam, G, Oosterhoff, A, Shor, L, Wahlstrom, M, Laine-Ylijoki, J, Pihlajaniemi, M, Ojala, M, Broholm, K, Villholth, K, Hjelmar, O, Heimovaara, T, Keijzer, J, and Keijzer, H (2001). Development of standard leaching tests for organic pollutants in soils, sediments and granular waste materials. ECN-C- 01-121, Standards, Measurement and Testing Programme of the European Commission, Brussels, Belgium.
  4. Chen, Y (2015). Development of a Vertical Flow Wetland for Treating First-flush from Impermeable Area, Ph.D. Dissertation, Hanseo University, Seosan, Republic of Korea.
  5. Gulbaz, S and Kazezyilmaz-Alhan, CM (2016). Experimental Investigation on Hydrologic Performance of LID with Rainfall-Watershed-Bioretention System, J. Hydrol. Eng., 22(1), pp. D4016003. [DOI: 10.1061/(ASCE)HE.1943-5584.0001450]
  6. Hsieh, C and Davis, AP (2005). Evaluation and Optimization of Bioretention Media for Treatment of Urban Storm Water Runoff, J. Environ. Eng., 131(11), pp. 1521-1531, [DOI:10.1061/ASCE0733-93722005131:111521]
  7. Hunt, WF, Smith, JT, Jadlocki, SJ, Hathaway, JM and Eubanks, PR (2008). Pollutant Removal and Peak Flow Mitigation by a Bioretention Cell in Urban Charlotte, N.C., J. Environ. Eng., 5(134), pp. 403-408. [DOI: 10.1061/ASCE0733-93722008134:5403]
  8. Hurley, S, Shrestha, P and Cording, A (2017). Nutrient Leaching from Compost: Implications for Bioretention and Other Green Stormwater Infrastructure, J. Sustain. Water Built Environ., 3(3), pp. 04017006. [DOI: 10.1061/JSWBAY.0000821]
  9. Pitt, R, Lantrip, J, Harrisson, R, Henry, CL and Xue D (1999). Infiltration through Disturbed Urban Soils and Compost-Amended Soil Effects on Runoff Quality and Quantity, Report EPA/600/R-00/016, United States Environmental Protection Agency, Washington, DC.
  10. Kim, H, Seagren, A, and Davis, AP (2003). Engineered Bioretention for Removal of Nitrate from Stormwater, Water Environ. Res., 75(4), pp. 355-367. [DOI: 10.2175/106143003x141169]
  11. McLaughlan, RG and Al-Mashaqbeh, O (2008). Effect of media type and particle size on dissolved organic carbon release from woody filtration media, Bioresour. Technol., 100, pp. 1020-1023. [DOI: https://doi.org/10.1016/j.biortech.2008.07.013]
  12. Munch, JM, Totsche, KU, and Kaiser, K (2005). Physicochemical factors controlling the release of dissolved organic carbon from columns of forest subsoils, Eur. J. Soil Sci., 53, pp. 311-320. [DOI: https://doi.org/10.1046/j.1365-2389.2002.00439.x]
  13. Niu, S, Guerra, HB, Chen, Y, Park, K, Kim, Y (2013). Performance of a vertical subsurface flow (VSF) wetland treatment system using woodchips to treat livestock stormwater, Environ. Sci.: Process. Impacts, 15, pp. 1553-1561. [DOI: 10.1039/c3em00107e]
  14. Robertson, WD (2010). Nitrate removal rates in woodchip media of varying age, Ecol Eng., 36(11), pp. 1581-1587. [DOI: https://doi.org/10.1016/j.ecoleng.2010.01.008]
  15. Saeed, T and Sun, G (2011). Enhanced denitrification and organics removal in hybrid wetland columns: Comparative experiments, Bioresour. Technol., 102(2), pp. 967-974. [DOI: https://doi.org/10.1016/j.biortech.2010.09.056]
  16. Wehrer, M and Totsche, KU, (2005). Determination of effective release rates of polycyclic aromatic hydrocarbons and dissolved organic carbon by column outflow experiments, Eur. J. Soil Sci., 56, pp. 803-813. [DOI: https://doi.org/10.1111/j.1365-2389.2005.00716.x]
  17. Wong, MTF, Nortcliff, S, Swift, RS, (1998). Method for determining the acid ameliorating capacity of plant residue compost, urban waste compost, farmyard manure, and peat applied to tropical soils, Commun. Soil Sci. Plan., 29, pp. 2927-2937. [DOI: https://doi.org/10.1080/00103629809370166]