DOI QR코드

DOI QR Code

Numerical Simulation of Storm Surge and Wave due to Typhoon Kong-Rey of 2018

2018년 태풍 콩레이에 대한 폭풍해일과 파랑 수치모의

  • Kwon, Kab Keun (Research Institute, HYCERG, Hanyang University, ERICA Campus) ;
  • Jho, Myeong Hwan (Dept. of Civil and Environmental Engrg., Graduate School, Hanyang University) ;
  • Yoon, Sung Bum (Dept. of Civil and Environmental Engrg., Hanyang University)
  • 권갑근 ((주) HYCERG 부설연구소) ;
  • 조명환 (한양대학교 대학원 건설환경공학과) ;
  • 윤성범 (한양대학교 건설환경공학과)
  • Received : 2020.07.24
  • Accepted : 2020.08.20
  • Published : 2020.08.31

Abstract

Numerical simulations of the storm surge and waves induced by the Typhoon Kong-Rey incident on the south coast of Korea in 2018 are conducted using the JMA-MSM weather field provided by the Japan Meteorological Agency, and the calculated surge heights are compared with the time history observed at harbours along the south-east coast. For the waves occurring coincidentally with the storm surges the calculated significant wave heights are compared with the data measured using the wave buoys operated by the KHOA (Korea Hydrographic and Oceanographic Agency) and the KMA (Korea Meteorological Administration), and the data observed at AWAC stations of the KIOST (Korea Institute of Ocean Science and Technology). Additional simulations are also performed based on the pressure and wind fields obtained using the best track information provided by the JTWC (Joint Typhoon Warning Center) of the United States, and the results are compared and analyzed. Based on the results of this study it is found that the reliable weather fields are essential for the accurate simulation of storm surges and waves.

2018년 남해안에 내습한 태풍 콩레이에 의해 발생한 폭풍해일과 파랑을 일본 기상청의 기상자료인 JMA-MSM 기상 예보 자료를 이용하여 수치모의하고 남동 해안의 항만에서 관측된 폭풍해일 시계열 자료와 비교 검증하였다. 폭풍해일과 동시에 발생하는 파랑에 대해서는 국립해양조사원과 기상청에서 운영하는 해상 파고부이 자료 및 한국해양과학기술원에서 관측한 연안 AWAC 파고계 자료와 비교하여 검증하였다. 기상자료에 따른 폭풍해일과 파랑의 정밀도를 파악하기 위해 미국 합동태풍경보센터인 JTWC에서 제공하는 best track을 이용하여 생성된 기압장과 바람장을 이용한 수치모의를 수행하고 비교 분석하였다. 이 연구를 통하여 정도 높은 폭풍해일과 파랑을 추산하기 위해 신뢰도 높은 기상장이 필수적임을 알 수 있었다.

Keywords

References

  1. Akbar, M., Kanjanda, S. and Musinguzi, A. (2017). Effect of bottom friction, wind drag coefficient, and meteorological forcing in hindcast of Hurricane Rita storm surge using SWAN + ADCIRC model. J. Mar. Sci. Eng., 5(38), doi:10.3390/jmse5030038.
  2. Kim, G.H., Jin, S.B. and Yoon, S.B. (2016). Resonance of 2011 East Japan Tsunami over Continental Shelf along Ibaraki Coast of Japan. In: Vila-Concejo, A.; Bruce, E.; Kennedy, D.M., and McCarroll, R.J. (eds.), Proceedings of the 14th International Coastal Symposium (Sydney, Australia). Journal of Coastal Research, Special Issue No. 75, pp. 1137-1141.
  3. Kim, H.J. and Suh, S.W. (2019). Estimation of frequency of storm surge heights on the west and south coasts of korea using synthesized typhoons. Journal of Korean Society of Coastal and Ocean Engineers, 31(5), 241-252 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.5.241
  4. Komen, G.J., Hasselmann, S. and Hasselmann, K. (1984). On the existence of a fully developed windsea spectrum. J. Phys. Oceanogr., 14, 1271-1285. https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
  5. Korea Institute of Ocean Science and Technology (2019). WINK:Wave Information Network of Korea.
  6. Ku, H., Maeng, J.H. and Cho, K. (2019). Deterministic estimation of typhoon- induced surges and inundation on korean coastal regions. Journal of Korean Society of Coastal and Ocean Engineers, 31(1), pp. 1-8 (in Korean). https://doi.org/10.9765/KSCOE.2019.31.1.1
  7. Luettich, R., Westerink, J. and Scheffner, N. (1992). ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL. Vicksburg MS: Coastal Engineering Research Center.
  8. Luettich, R., Westerink, J. and Scheffner, N. (1994). ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 2. User's Manual for ADCIRC-2DDI. Vicksburg MS: Coastal Engineering Research Center.
  9. Ministry of Oceans and Fisheries (2019). Report on estimation of deep water design waves of Korea. pp. 117-149.
  10. Qiao, W., Song, J., He, H. and Li, F. (2019) Application of different wind field models and wave boundary layer model to typhoon waves numerical simulation in WAVEWATCH III model. Tellus A: Dynamic Meteorology and Oceanography, 71(1), 1657552, DOI:10.1080/16000870.2019.1657552.
  11. Suh, S.W. and Kim, H.J. (2012). Typhoon surge simulation on the west coast incorporating asymmetric vortex and wave model on a fine finite element grid. Journal of Korean Society of Coastal and Ocean Engineers, 24(3), 166-178 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.3.166
  12. Wang, Z., Gong., Y., Cui, J., Dong, S. and Wu, K. (2019). Effect of the drag coefficient on a typhoon wave model. Journal of Oceanology and Limnology, 37(6), 1795-1804. https://doi.org/10.1007/s00343-019-8228-4
  13. Wu, J. (1982). Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res., 87, C12, 9704-9706. https://doi.org/10.1029/JC087iC12p09704