DOI QR코드

DOI QR Code

Reinterpretation of the Biot's conjecture on conics

Biot의 원뿔곡선에 관한 conjecture의 재해석

  • Kim, Hyang Sook (Department of Computer Engineering & Institute of Natural Science Inje University) ;
  • Park, Hye Kyung (Department of Computer Aided Sciences Inje University)
  • Received : 2020.07.27
  • Accepted : 2020.08.20
  • Published : 2020.08.31

Abstract

In this study, we investigate the latus rectum, one of the geometric measures of the conics, as one of the ways in which learners harmonize the geometric and algebraic approaches to conics from a pedagogical point of view. We also introduce the conical curve of Biot as presented in 'The Discourse on the Latus Rectum in conics(2013)' by Takeshi Sugimoto and reinterpret it for visualization and use as teaching material. Therefore, we expect that the importance of mathematical concepts will be recognized in conics and students can experience geometry learning that is explored in the school field and have a positive effect in developing the power to apply even in the context of applied problems.

Keywords

References

  1. 김향숙.박진석. 해석기하학개론<제2판>. 경문사, 2011.
  2. 김향숙.박진석.하형수, 원뿔곡선에 관한 Apollonius의 symptoms 재조명과 시각화, 한국수학교육학회지 시리즈 A 제52권 제1호(2013), 83-95.
  3. 교육부, 수학과 교육과정. 교육부 고시 제 2015-74호 [별책 8], 2015.
  4. 정해남, 예비수학교사를 위한 수학사 활용 방안, 한국수학사학회지 제25권 제3호(2012), 141-157.
  5. 한인기, 슈타이너.레무스 정리에 대한 다양한 증명방법, 한국수학사학회지 제17권 제3호(2004), 93-108.
  6. Biot, J. B., Traite analytique des courbes surfaces du second degre, Crapelet, France, pp. xxiv p. 320+5 Plts. 1802.
  7. Coolidge, J. L., A History of the Conic Sections and Quadric Surfaces [Reprint of 1945 ed.], Dover Pub., Inc., New York, USA, pp.214. 1945/1968.
  8. Coxeter, H. S. M., Introduction to Geometry, John Wiley & Sons, Inc., USA, p.470. 1989.
  9. Heath, T. L., Apollonius of Perga, Treatise on conic sections-The conics of Apollonius. Cambridge : at the university press, 1896.
  10. Heath, T. L., The woks of Archimedes, Cambridge Univ. Press, London, 1897.
  11. Takeshi Sugimoto., Discourse on the Latus Rectum in conics, symmetry: culture and science Vol 24, Nos. 1-4, 295-309. 2013.