DOI QR코드

DOI QR Code

고체 산화물 수전해 시스템(SOEC)에서 전기화학적 특성의 온도 의존성에 대한 수치 모델링

A Numerical Modeling of the Temperature Dependence on Electrochemical Properties for Solid Oxide Electrolysis Cell(SOEC)

  • 투고 : 2020.05.06
  • 심사 : 2020.06.08
  • 발행 : 2020.06.30

초록

최근 탄화수소를 에너지원으로 사용하는 엔진을 대체할 동력원으로 연료 전지가 주목을 받게 되면서 수소 생산 기술에 대한 연구가 활발하게 진행되고 있다. 수소를 생산하는 다양한 방법 중에 고체 산화물 수전해 시스템(SOEC)은 수소를 생산하기 위한 기초적이고, 친환경적인 방법이다. 고체 산화물 수전해 시스템은 고온, 고압 조건에서 운전이 가능하여 낮은 에너지 수요와 높은 열효율을 지니기 때문에 실험적인 연구가 활발하게 진행되고 있다. 하지만 실험적인 연구 성과에 비해 수치모델 연구는 비교적 부진하다. 이에 대한 원인으로 기존의 수치모델이 온도와 압력의 변화에 따른 성능 예측의 유효성이 상당히 낮기 때문으로 판단하였다. 이에 본 연구에서는 고체 산화물 수전해 시스템의 셀 성능 예측의 유효성을 높일 수 있는 방안을 제시하기 위해서 Patterened Ni-YSZ cermet electrode(40 wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3)로 구성된 상용 막-극 접합체의 기존의 연구 데이터를 활용하였다. 온도에 따른 전기화학적 특성의 영향을 수치적으로 분석한 결과, 유효성에 가장 큰 편차를 가져오는 변수들은 charge transfer coefficient(CTC), exchange current density, diffusion coefficient, electrical conductivity인 것으로 나타났다. 온도와 압력에 따른 해당 변수들의 영향 및 경향성을 분석하여 과전압 모델을 제시하였다. 다양한 모델의 적용과 타당성을 확보하기 위해서 교차-검증이 도입되었다. 그 결과, 체계화된 유효성 검증 과정에 기초한 고체 산화물 수전해 시스템의 수치 모델은 뛰어난 성능의 예측 결과를 보여주었다.

In recent days, fuel cell has received attention from the world as an alternative power source to hydrocarbon used in automobile engines. With the industrial advances of fuel cell, There have been a lot of researches actively conducted to find a way of generating hydrogen. Among many hydrogen production methods, Solid Oxide Electrolysis Cell(SOEC) is not only a basic way but also environment-friendly method to produce hydrogen gas. Solid Oxide Electrolysis Cell has lower electrical energy demands and high thermal efficiency since it is possible to operate under high temperature and high pressure conditions. For these reasons, experimental researches as well as studies on numerical modeling for Solid Oxide Electrolysis Cell have been under way. However, studies on numerical modeling are relatively less enough than experimental accomplishments and have limited performance prediction, which mostly is considered as a result from inadequate effects of electrochemical properties by temperature and pressure. In this study, various experimental studies of commercial Membrane Electrode Assembly (MEA) composed of Ni-YSZ (40wt%, Ni-60 wt% YSZ)/8-YSZ (TOSOH, TZ8Y)/LSM (La0.9Sr0.1MnO3) was utilized for improving effectiveness of SOEC model. After numerically analyzing effects of electrochemical properties according to operating temperature, causing the largest deviation between experiments and simulation are that Charge Transfer Coefficient (CTC), exchange current density, diffusion coefficient, electrical conductivity in SOEC. Analyzing temperature effect on parameter used in overpotential model is conducted for modeling of SOEC. cross-validation method is adopted for application of various MEA and evaluating feasibility of model. As a result, the study confirm that the numerical model of SOEC based on structured process of effectiveness evaluation makes performance prediction better.

키워드

참고문헌

  1. Ni, M., Leung, M.K.H., Leung, D.Y.C., 2006, A modeling study on concentration overpotentials of a reversible solid oxide fuel cell, pp.460-466., J Power Sources.
  2. Ni, M., 2009, Computational fluid dynamics modeling of a solid oxide electrolyzer cell for hydrogen production, pp.7795-7806., Int J Hydrogen Energy,
  3. Udagawa, J., Aguiar, P., Brandon, N.P., 2007, Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell., pp.127-136., J Power Sources
  4. Mingyi, L., Bo, Y., Jingming, X., Jing, C., 2008, Two-dimensional simulation and critical efficiency analysis of high-temperature steam electrolysis system for hydrogen production., pp.708-712 J Power Sources.
  5. Setoguchi, T., Okamoto, K., Eguchi, K., Arai, H., 1992, Effects of anode material and fuel on anodic reaction of solid oxide fuel cells., pp.2875-2880, J Electrochem Soc.
  6. Shi, Y., et al., 2007, Modeling of an anode-supportedNi-YSZ|Ni-ScSZ|ScSZ|LSM-ScSZ multiplelayers SOFC cell: Part I. Experiments, model developmentand validation., pp.235-245, J Power Sources.
  7. Dawoud, B., Amer, E., Gross, D., 2007, Experimental investigation of an adsorptive thermal energy storage., pp.135-147, Int J Energy Res.
  8. Tanaka, Y., Hoerlein, M.P., Schiller, G., 2016, Numerical simulation of steam electrolysis with a solid oxide cell for proper evaluation of cell performances., pp.752-763, Int J Hydrogen Energy
  9. Mori, M., et al., 1994, Cubic-stabilized zirconia and alumina composites as electrolytes in planar type solid oxide fuel cells., pp.157-164, Solid State Ionics.
  10. Kim-Lohsoontorn, P., Bae, J., 2011, Electrochemical performance of solid oxide electrolysis cell electrodes under high-temperature coelectrolysis of steam and carbon dioxide., pp.7161-7168, J Power Sources. https://doi.org/10.1016/j.jpowsour.2010.09.018
  11. Biaku, C.Y., et al., 2008, A semiempirical study of the temperature dependence of the anode charge transfer coefficient of a 6 kW PEM electrolyzer., pp.4247-4254, Int J Hydrogen Energy
  12. Oh, S.M., 2014, Electrochemistry 2nd edition., pp. 23-90, Freeacademy.
  13. Ryan, O'hayre., et. al., 2009, "Fuel Cell Fundamental 2ndedition", pp.2-141, Wiley.
  14. Ni, M., Leung, M.K.H., Leung, D.Y.C., 2007, Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant., pp.4648-4660, Int J Hydrogen Energy
  15. Primdahl, Soren., 1999, Nickel/yttria-stabilised zirconia cermet anodes for solid oxide fuel cells.
  16. Mizusaki, J., et al., 1994, Kinetic studies of the reaction at the nickel pattern electrode on YSZ in $H_2H_2O$ atmospheres., pp.52-58, Solid State Ionics.
  17. Laguna-Bercero, M.A., et al., 2011, Performance and aging of microtubular YSZ-based solid oxide regenerative fuel cells., pp.116-123, Fuel Cells.
  18. James, R. Welty., et al., 2010, "Fundamentals of Momentum, Heat, and Mass Transfer 5thedition", pp.434-465, Wiley.
  19. Santarelli, M., et al., 2007, Experimental analysis of the polarization effects at variable local temperature and fuel consumption in a 100 kW SOFC Stack., pp.533-544, ECS Trans.
  20. Pan, W., et al., 2016, Mechanism and kinetics of $Ni-Y_2O_3-ZrO_2$hydrogen electrode for water electrolysis reactions in solid oxide electrolysis Cells., pp.F106-F114, J Electrochem Soc.
  21. Zhu, W.Z., Deevi, S.C., 2003, A review on the status of anode materials for solid oxide fuel cells., pp.228-239, Mater Sci Eng A.
  22. Aruna, S., Muthuraman, M., Patil, K., 1998, Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells., pp.45-51, Solid State Ionics.
  23. Momma, A., et al., 1997, Polarization behavior of high temperature electrolysis cells (SOEC)., pp.369-373, J Ceram Soc Japan.