DOI QR코드

DOI QR Code

A novel method for manufacturing macroscale patterns to enhance electrical efficiency by Triboelectric generator

마찰전기 발전기의 전기 효율을 향상하기 위한 macroscale 패턴 제조 방식 연구

  • Yang, Jun-Ho (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Lee, Jaeyoung (Handong Global University, Department of Mechanical and Control Engineering)
  • 양준호 (서울대학교 기계항공공학부) ;
  • 이재영 (한동대학교 기계제어공학부)
  • Received : 2020.02.13
  • Accepted : 2020.03.05
  • Published : 2020.03.31

Abstract

This study investigates a simple, yet effective and affordable, manufacturing method to increase the electrical efficiency by triboelectric generator (TEG) applying 3D printers. In this study, we propose the newly manufacturing method for producing a macroscale surface patterning. Overall experiments were conducted in designed test-bed chamber system which can control the magnitude and frequency of the frictional force and the relative humidity. Furthermore, we can demonstrate the voltage enhancement of macroscale surface patterns about 1.6-fold. The peak voltage producing by TEG was as high as 18 V. In comparison with conventional process that employ micro- and nanoscale patterns, the proposed process by 3D printer is faster and more suitable for mass production.

본 연구에서는 간단하면서, 효과적이고, 지속가능성이 높은 3차원 프린터를 활용한 마찰 전기 발전기 제작 방식을 소개하고자 합니다. 본 연구는 매크로 사이즈의 표면 패턴을 생성하는 방식으로써, 새롭게 소개되는 마찰전기 발전기 제작 방식입니다. 모든 실험은 특별히 제작된 test-bed에서 수행되었으며, test-bed는 마찰을 일으키는 무게와 빈도수, 상대 습도 등을 조정할 수 있는 실험 환경입니다. 추가적으로, 본 연구를 통하여 본연구진은 어떠한 공정을 거치지 않은 마찰전기 발전기에 비해 공정을 거친 마찰전기 발전기가 1.6배가량 전압의 성능이 향상된 것을 확인하였습니다. 기존의 마이크로 그리고 나노 사이즈의 패턴들과 비교하여 3차원 프린터를 활용한 본 연구의 방식은 제작이 훨씬 빠르고, 용이하며, 대량 생산에 적합한 방법이 될 수 있습니다.

Keywords

References

  1. Chu, W. S.; Chun, D. M.; Ahn, S. H., 2014, Research Advancement of Green Technologies, Int. J. Precis. Eng. Manuf., Vol. 15, pp. 973-977. https://doi.org/10.1007/s12541-014-0424-8
  2. Park, C. W.; Kwon, K. S.; Kim, W. B.; Min, B. K.; Park, S. J.; Sung, I. H.; Yoon, Y.S.; Lee, K. S.; Lee, J.; Seok, J., 2009, Energy Consumption Reductive Technology in Manufacturing-A Selective Review of Policies, Standards, Research, Int. J. Precis. Eng. Manuf., Vol. 10, pp. 151-173. https://doi.org/10.1007/s12541-009-0107-z
  3. Wang, Z. L., 2013, Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors, ACS Nano, Vol. 7, pp. 9533-9557. https://doi.org/10.1021/nn404614z
  4. Fan, F. R.; Tian, Z. Q.; Wang, Z. L., 2012, Flexible Triboelectric Generator, Nano Energy Vol. 1, pp. 328-334. https://doi.org/10.1016/j.nanoen.2012.01.004
  5. Kim, S.; Gupta, M. K.; Lee, K. Y.; Sohn, A.; Kim, T. Y.; Shin, K.; Kim, D.; Kim, S. K.; Lee, K. H.; Shin, H. J., 2014, Transparent Flexible Graphene Triboelectric Nanogenerators, Adv. Mater. Vol. 26, pp. 3918-3925. https://doi.org/10.1002/adma.201400172
  6. Lee, K. Y.; Chun, J.; Lee, J. H.; Kim, K. N.; Kang, N. R.; Kin, J. Y.; Kim, M. H.; Shin, K.; Gupta, M. K.; Baik, J. M., 2014, Hydrophobic Sponges Structure Based Triboelectric Nanogenerator, Adv. Mater. Vol. 26, pp. 5037-5042. https://doi.org/10.1002/adma.201401184
  7. Fan, F.; Lin, L.; Zhu, G.; Wu, W.; Zhang, R.; Wang, Z. L., 2012, Transparent Triboelectric Nanogenerators and Self-powered Pressure Sensors Based on Micropatterned Plastic Films, Nano Lett. Vol. 12, pp. 3109-3114. https://doi.org/10.1021/nl300988z
  8. Yang, Y.; Lin, L.; Zhang, Y.; Jing, Q.; Hou, T. C.; Wang, Z. L., 2012, Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator, ACS Nano, Vol. 6, pp. 10378-10383. https://doi.org/10.1021/nn304374m
  9. Wang, S.; Lin, L.; Wang, Z. L., 2012, Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics, Nano Lett., Vol. 12, pp. 6339-6346. https://doi.org/10.1021/nl303573d
  10. Zhu, G.; Lin, Z. H.; Jing, Q.; Bai, P.; Pan, C.; Yang, Y.; Zhou, Y.; Wang, Z. L., 2013, Toward Large-scale Energy Harvesting by a Nanoparticleenhanced Triboelectric Nanogenerator, Nano Lett., Vol. 13, pp. 847-853 https://doi.org/10.1021/nl4001053
  11. Lin, Z.; Zhu, G.; Zhou, Y. S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z. L., 2013, A Self-Powered Triboelectric Nanosensor for Mercury Ion Detection. Angew. Chem. Int. Ed. Vol. 52, pp. 1-6. https://doi.org/10.1002/anie.201209858
  12. Yang, X.; Zhu, G.; Wang, S.; Zhang, R.; Lin, L.; Wu, W.; Wang, Z. L., 2012, A Self-Powered Electrochromic Device Driven by a Nanogenerator, Energy Environ. Sci., Vol. 5, pp. 9462-9466. https://doi.org/10.1039/c2ee23194h
  13. Lin, Z.; Cheng, G.; Wu, W.; Pradel, K. C.; Wang, Z. L., 2014, Dual-Mode Triboelectric Nanogenerator for Harvesting Water Energy and as a Self-Powered Ethanol Nanosensor, ACS Nano, Vol. 8, pp. 6440-6448. https://doi.org/10.1021/nn501983s
  14. Zhong, J.; Zhong, Q.; Fan, F.; Zhang, Y.; Wang, S.; Hu, B.; Wang, Z. L.; Zhou, J., 2012, Finger Typing Driven Triboelectric Nanogenerator and Its Use for Instantaneously Lighting up LEDs, Nano Energy, Vol. 2, pp. 491-497. https://doi.org/10.1016/j.nanoen.2012.11.015
  15. Hou, T.; Yang, Y.; Zhang, H.; Chen, J.; Chen, L.; Wang, Z. L., 2013, Triboelecric Nanogenerator Built Inside Shoe Insole for Harvesting Walking Energy, Nano Energy Vol. 2, pp. 856-862. https://doi.org/10.1016/j.nanoen.2013.03.001