DOI QR코드

DOI QR Code

NFI-C Is Required for Epiphyseal Chondrocyte Proliferation during Postnatal Cartilage Development

  • Lee, Dong-Seol (Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Roh, Song Yi (Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Choi, Hojae (Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Park, Joo-Cheol (Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University)
  • Received : 2019.11.15
  • Accepted : 2020.07.26
  • Published : 2020.08.31

Abstract

Stringent regulation of the chondrocyte cell cycle is required for endochondral bone formation. During the longitudinal growth of long bones, mesenchymal stem cells condense and differentiate into chondrocytes. Epiphyseal chondrocytes sequentially differentiate to form growth-plate cartilage, which is subsequently replaced with bone. Although the importance of nuclear factor 1C (Nfic) in hard tissue formation has been extensively studied, knowledge regarding its biological roles and molecular mechanisms in this process remains insufficient. Herein, we demonstrated that Nfic deficiency affects femoral growth-plate formation. Chondrocyte proliferation was downregulated and the number of apoptotic cell was increased in the growth plates of Nfic-/- mice. Further, the expression of the cell cycle inhibitor p21 was upregulated in the primary chondrocytes of Nfic-/- mice, whereas that of cyclin D1 was downregulated. Our findings suggest that Nfic may contribute to postnatal chondrocyte proliferation by inhibiting p21 expression and by increasing the stability of cyclin D1 protein.

Keywords

References

  1. Alao, J.P. (2007). The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol. Cancer 6, 24. https://doi.org/10.1186/1476-4598-6-24
  2. Archer, C.W. and Francis-West, P. (2003). The chondrocyte. Int. J. Biochem. Cell Biol. 35, 401-404. https://doi.org/10.1016/S1357-2725(02)00301-1
  3. Arsenault, A.L., Ottensmeyer, F.P., and Heath, I.B. (1988). An electron microscopic and spectroscopic study of murine epiphyseal cartilage:analysis of fine structure and matrix vesicles preserved by slam freezing and freeze substitution. J. Ultrastruct. Mol. Struct. Res. 98, 32-47. https://doi.org/10.1016/S0889-1605(88)80932-7
  4. Baldin, V., Lukas, J., Marcote, M.J., Pagano, M., and Draetta, G. (1993). Cyclin D1 is a nuclear-protein required for cell-cycle progression in G(1). Genes Dev. 7, 812-821. https://doi.org/10.1101/gad.7.5.812
  5. Birkedal-Hansen, H., Moore, W.G., Bodden, M.K., Windsor, L.J., Birkedal-Hansen, B., DeCarlo, A., and Engler, J.A. (1993). Matrix metalloproteinases:a review. Crit. Rev. Oral Biol. Med. 4, 197-250. https://doi.org/10.1177/10454411930040020401
  6. Diehl, J.A., Cheng, M.G., Roussel, M.F., and Sherr, C.J. (1998). Glycogen synthase kinase 3 beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499-3511. https://doi.org/10.1101/gad.12.22.3499
  7. Diehl, J.A., Zindy, F., and Sherr, C.J. (1997). Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquintin-proteasome pathway. Genes Dev. 11, 957-972. https://doi.org/10.1101/gad.11.8.957
  8. Ewen, M.E., Sluss, H.K., Sherr, C.J., Matsushime, H., Kato, J.Y., and Livingston, D.M. (1993). Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73, 487-497. https://doi.org/10.1016/0092-8674(93)90136-E
  9. Fantl, V., Stamp, G., Andrews, A., Rosewell, I., and Dickson, C. (1995). Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev. 9, 2364-2372. https://doi.org/10.1101/gad.9.19.2364
  10. Ganiatsas, S., Dow, R., Thompson, A., Schulman, B., and Germain, D. (2001). A splice variant of Skp2 is retained in the cytoplasm and fails to direct cyclin D1 ubiquitination in the uterine cancer cell line SK-UT. Oncogene 20, 3641-3650. https://doi.org/10.1038/sj.onc.1204501
  11. Gronostajski, R.M. (2000). Roles of the NFI/CTF gene family in transcription and development. Gene 249, 31-45. https://doi.org/10.1016/S0378-1119(00)00140-2
  12. Hall, B.K., and Miyake, T. (2000). All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22, 138-147. https://doi.org/10.1002/(SICI)1521-1878(200002)22:2<138::AID-BIES5>3.0.CO;2-4
  13. Huang, H., Veien, E.S., Zhang, H., Ayers, D.C., and Song, J. (2016). Skeletal characterization of Smurf2-deficient mice and in vitro analysis of Smurf2-deficient chondrocytes. PLoS One 11, e0148088. https://doi.org/10.1371/journal.pone.0148088
  14. Hunziker, E.B., Kapfinger, E., and Saager, C. (1999). Hypertrophy of growth plate chondrocytes in vivo is accompanied by modulations in the activity state and surface area of their cytoplasmic organelles. Histochem. Cell Biol. 112, 115-123.
  15. Izzi, L. and Attisano, L. (2004). Regulation of the TGF beta signalling pathway by ubiquitin-mediated degradation. Oncogene 23, 2071-2078. https://doi.org/10.1038/sj.onc.1207412
  16. Kronenberg, H.M. (2003). Developmental regulation of the growth plate. Nature 423, 332-336. https://doi.org/10.1038/nature01657
  17. Kruse, U. and Sippel, A.E. (1994). Transcription factor nuclear factor I proteins form stable homo- and heterodimers. FEBS Lett. 348, 46-50. https://doi.org/10.1016/0014-5793(94)00585-0
  18. Lee, D.S., Choung, H.W., Kim, H.J., Gronostajski, R.M., Yang, Y.I., Ryoo, H.M., Lee, Z.H., Kim, H.H., Cho, E.S., and Park, J.C. (2014). NFI-C regulates osteoblast differentiation via control of osterix expression. Stem Cells 32, 2467-2479. https://doi.org/10.1002/stem.1733
  19. Lee, D.S., Park, J.T., Kim, H.M., Ko, J.S., Son, H.H., Gronostajski, R.M., Cho, M.I., Choung, P.H., and Park, J.C. (2009). Nuclear factor I-C is essential for odontogenic cell proliferation and odontoblast differentiation during tooth root development. J. Biol. Chem. 284, 17293-17303. https://doi.org/10.1074/jbc.M109.009084
  20. Lee, D.S., Yoon, W.J., Cho, E.S., Kim, H.J., Gronostajski, R.M., Cho, M.I., and Park, J.C. (2011). Crosstalk between nuclear factor I-C and transforming growth factor-beta1 signaling regulates odontoblast differentiation and homeostasis. PLoS One 6, e29160. https://doi.org/10.1371/journal.pone.0029160
  21. Lee, J.H., Lee, D.S., Nam, H., Lee, G., Seo, B.M., Cho, Y.S., Bae, H.S., and Park, J.C. (2012). Dental follicle cells and cementoblasts induce apoptosis of ameloblast-lineage and Hertwig's epithelial root sheath/epithelial rests of Malassez cells through the Fas-Fas ligand pathway. Eur. J. Oral Sci. 120, 29-37. https://doi.org/10.1111/j.1600-0722.2011.00895.x
  22. Lin, D.I., Barbash, O., Kumar, K.G., Weber, J.D., Harper, J.W., Klein-Szanto, A.J., Rustgi, A., Fuchs, S.Y., and Diehl, J.A. (2006). Phosphorylation-dependent ubiquitination of cyclin D1 by the SCF(FBX4-alphaB crystallin) complex. Mol. Cell 24, 355-366. https://doi.org/10.1016/j.molcel.2006.09.007
  23. Liu, F. (2006). Smad3 phosphorylation by cyclin-dependent kinases. Cytokine Growth Factor Rev. 17, 9-17. https://doi.org/10.1016/j.cytogfr.2005.09.010
  24. LuValle, P. and Beier, F. (2000). Cell cycle control in growth plate chondrocytes. Front. Biosci. 5, D493-D503. https://doi.org/10.2741/A529
  25. Magiera, K., Tomala, M., Kubica, K., De Cesare, V., Trost, M., Zieba, B.J., Kachamakova-Trojanowska, N., Les, M., Dubin, G., Holak, T.A., et al. (2017). Lithocholic acid hydroxyamide destabilizes cyclin D1 and induces G0/G1 arrest by inhibiting deubiquitinase USP2a. Cell Chem. Biol. 24, 458-470.e418. https://doi.org/10.1016/j.chembiol.2017.03.002
  26. Morgan, D.O. (1997). Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261-291. https://doi.org/10.1146/annurev.cellbio.13.1.261
  27. Noonan, K.J., Hunziker, E.B., Nessler, J., and Buckwalter, J.A. (1998). Changes in cell, matrix compartment, and fibrillar collagen volumes between growth-plate zones. J. Orthop. Res. 16, 500-508. https://doi.org/10.1002/jor.1100160416
  28. Oh, H.J., Lee, H.K., Park, S.J., Cho, Y.S., Bae, H.S., Cho, M.I., and Park, J.C. (2012). Zinc balance is critical for NFI-C mediated regulation of odontoblast differentiation. J. Cell. Biochem. 113, 877-887. https://doi.org/10.1002/jcb.23421
  29. Ouellet, S., Vigneault, F., Lessard, M., Leclerc, S., Drouin, R., and Guerin, S.L. (2006). Transcriptional regulation of the cyclin-dependent kinase inhibitor 1A (p21) gene by NFI in proliferating human cells. Nucleic. Acids. Res. 34, 6472-6487. https://doi.org/10.1093/nar/gkl861
  30. Park, J.C., Herr, Y., Kim, H.J., Gronostajski, R.M., and Cho, M.I. (2007). Nfic gene disruption inhibits differentiation of odontoblasts responsible for root formation and results in formation of short and abnormal roots in mice. J. Periodontol. 78, 1795-1802. https://doi.org/10.1902/jop.2007.060363
  31. Pines, M. and Hurwitz, S. (1991). The role of the growth plate in longitudinal bone growth. Poult. Sci. 70, 1806-1814. https://doi.org/10.3382/ps.0701806
  32. Reya, T. and Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature 434, 843-850. https://doi.org/10.1038/nature03319
  33. Roussel, M.F. (1999). The INK4 family of cell cycle inhibitors in cancer. Oncogene 18, 5311-5317. https://doi.org/10.1038/sj.onc.1202998
  34. Russell, A., Thompson, M.A., Hendley, J., Trute, L., Armes, J., and Germain, D. (1999). Cyclin D1 and D3 associate with the SCF complex and are coordinately elevated in breast cancer. Oncogene 18, 1983-1991. https://doi.org/10.1038/sj.onc.1202511
  35. Sherr, C.J. (1993). Mammalian G1 cyclins. Cell 73, 1059-1065. https://doi.org/10.1016/0092-8674(93)90636-5
  36. Sherr, C.J. (1995). D-type cyclins. Trends Biochem. Sci. 20, 187-190. https://doi.org/10.1016/S0968-0004(00)89005-2
  37. Shum, L. and Nuckolls, G. (2002). The life cycle of chondrocytes in the developing skeleton. Arthritis Res. 4, 94-106. https://doi.org/10.1186/ar541
  38. Smythies, J.A., Sun, M., Masson, N., Salama, R., Simpson, P.D., Murray, E., Neumann, V., Cockman, M.E., Choudhry, H., Ratcliffe, P.J., et al. (2019). Inherent DNA-binding specificities of the HIF-1alpha and HIF-2alpha transcription factors in chromatin. EMBO Rep. 20, e46401. https://doi.org/10.15252/embr.201846401
  39. Steele-Perkins, G., Butz, K.G., Lyons, G.E., Zeichner-David, M., Kim, H.J., Cho, M.I., and Gronostajski, R.M. (2003). Essential role for NFI-C/CTF transcription-replication factor in tooth root development. Mol. Cell. Biol. 23, 1075-1084. https://doi.org/10.1128/MCB.23.3.1075-1084.2003
  40. Stewart, M.C., Farnum, C.E., and MacLeod, J.N. (1997). Expression of p21CIP1/WAF1 in chondrocytes. Calcif. Tissue Int. 61, 199-204. https://doi.org/10.1007/s002239900323
  41. Stickens, D., Behonick, D.J., Ortega, N., Heyer, B., Hartenstein, B., Yu, Y., Fosang, A.J., Schorpp-Kistner, M., Angel, P., and Werb, Z. (2004). Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131, 5883-5895. https://doi.org/10.1242/dev.01461
  42. Takahashi-Yanaga, F. and Sasaguni, T. (2008). GSK-3 beta regulates cyclin D1 expression: a new target for chemotherapy. Cell. Signal. 20, 581-589. https://doi.org/10.1016/j.cellsig.2007.10.018
  43. Vu, T.H., Shipley, J.M., Bergers, G., Berger, J.E., Helms, J.A., Hanahan, D., Shapiro, S.D., Senior, R.M., and Werb, Z. (1998). MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411-422. https://doi.org/10.1016/S0092-8674(00)81169-1
  44. Waterfield, M.D. (1991). Diverse functions. Nature 350, 566. https://doi.org/10.1038/350566a0
  45. Werb, Z. (1997). ECM and cell surface proteolysis: regulating cellular ecology. Cell 91, 439-442. https://doi.org/10.1016/S0092-8674(00)80429-8
  46. Xing, L., Zhang, M., and Chen, D. (2010). Smurf control in bone cells. J. Cell. Biochem. 110, 554-563. https://doi.org/10.1002/jcb.22586
  47. Yang, Y., Topol, L., Lee, H., and Wu, J. (2003). Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130, 1003-1015. https://doi.org/10.1242/dev.00324
  48. Zhang, M., Xie, R., Hou, W., Wang, B.L., Shen, R., Wang, X.M., Wang, Q., Zhu, T.H., Jonason, J.H., and Chen, D. (2009). PTHrP prevents chondrocyte premature hypertrophy by inducing cyclin-D1-dependent Runx2 and Runx3 phosphorylation, ubiquitylation and proteasomal degradation. J. Cell Sci. 122, 1382-1389. https://doi.org/10.1242/jcs.040709
  49. Zhao, L., Huang, J., Guo, R., Wang, Y., Chen, D., and Xing, L. (2010). Smurf1 inhibits mesenchymal stem cell proliferation and differentiation into osteoblasts through JunB degradation. J. Bone Miner. Res. 25, 1246-1256. https://doi.org/10.1002/jbmr.28

Cited by

  1. Genome-Wide Differentially Methylated Region Analysis to Reveal Epigenetic Differences of Articular Cartilage in Kashin-Beck Disease and Osteoarthritis vol.9, 2020, https://doi.org/10.3389/fcell.2021.636291