참고문헌
- Bar-Peled, L., Chantranupong, L., Cherniack, A.D., Chen, W.W., Ottina, K.A., Grabiner, B.C., Spear, E.D., Carter, S.L., Meyerson, M., and Sabatini, D.M. (2013). A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100-1106. https://doi.org/10.1126/science.1232044
- Burnett, P.E., Barrow, R.K., Cohen, N.A., Snyder, S.H., and Sabatini, D.M. (1998). RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl. Acad. Sci. U. S. A. 95, 1432-1437. https://doi.org/10.1073/pnas.95.4.1432
- Chantranupong, L., Scaria, S.M., Saxton, R.A., Gygi, M.P., Shen, K., Wyant, G.A., Wang, T., Harper, J.W., Gygi, S.P., and Sabatini, D.M. (2016). The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 165, 153-164. https://doi.org/10.1016/j.cell.2016.02.035
- Chung, J., Kuo, C.J., Crabtree, G.R., and Blenis, J. (1992). Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 69, 1227-1236. https://doi.org/10.1016/0092-8674(92)90643-Q
- Cole, D.G., Saxton, W.M., Sheehan, K.B., and Scholey, J.M. (1994). A "slow" homotetrameric kinesin-related motor protein purified from Drosophila embryos. J. Biol. Chem. 269, 22913-22916. https://doi.org/10.1016/S0021-9258(17)31593-4
- Enos, A.P. and Morris, N.R. (1990). Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60, 1019-1027. https://doi.org/10.1016/0092-8674(90)90350-N
- Gross, S.P. (2004). Hither and yon: a review of bi-directional microtubulebased transport. Phys. Biol. 1, R1-R11. https://doi.org/10.1088/1478-3967/1/2/R01
- Hara, K., Yonezawa, K., Weng, Q.P., Kozlowski, M.T., Belham, C., and Avruch, J. (1998). Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484-14494. https://doi.org/10.1074/jbc.273.23.14484
- Heitman, J., Movva, N.R., and Hall, M.N. (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905-909. https://doi.org/10.1126/science.1715094
- Hirokawa, N., Noda, Y., Tanaka, Y., and Niwa, S. (2009). Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682-696. https://doi.org/10.1038/nrm2774
- Inoki, K., Li, Y., Xu, T., and Guan, K.L. (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 17, 1829-1834. https://doi.org/10.1101/gad.1110003
- Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K.L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648-657. https://doi.org/10.1038/ncb839
- Kapitein, L.C., Peterman, E.J., Kwok, B.H., Kim, J.H., Kapoor, T.M., and Schmidt, C.F. (2005). The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435, 114. https://doi.org/10.1038/nature03503
- Kashlna, A., Baskin, R., Cole, D., Wedaman, K., Saxton, W., and Scholey, J. (1996). A bipolar kinesin. Nature 379, 270. https://doi.org/10.1038/379270a0
- Kim, M.Y., Kruger., A.J., Jeong, J.Y., Kim, J., Shin, P.K., Kim, S.Y., Cho, J.Y., Hahm, K.B., and Hong, S.P. (2019). Combination therapy with a PI3K/mTOR dual inhibitor and chloroquine enhances synergistic apoptotic cell death in Epstein-Barr virus-infected gastric cancer cells. Mol. Cells 42, 448-459. https://doi.org/10.14348/molcells.2019.2395
- Kim, S.G., Buel, G.R., and Blenis, J. (2013). Nutrient regulation of the mTOR complex 1 signaling pathway. Mol. Cells 35, 463-473. https://doi.org/10.1007/s10059-013-0138-2
- Kim, W., Jang, Y.G., Yang, J., and Chung, J. (2017). Spatial activation of TORC1 is regulated by Hedgehog and E2F1 signaling in the Drosophila eye. Dev. Cell 42, 363-375.e4. https://doi.org/10.1016/j.devcel.2017.07.020
- Lawrence, C.J., Dawe, R.K., Christie, K.R., Cleveland, D.W., Dawson, S.C., Endow, S.A., Goldstein, L.S., Goodson, H.V., Hirokawa, N., Howard, J., et al. (2004). A standardized kinesin nomenclature. J. Cell Biol. 167, 19-22. https://doi.org/10.1083/jcb.200408113
- Lee, J., Yi, S., Chang, J.Y., Kim, J.T., Sul, H.J., Park, K.C., Zhu, X., Cheng, S.Y., Kero, J., Kim, J., et al. (2019). Loss of primary cilia results in the development of cancer in the murine thyroid gland. Mol. Cells 42, 113-122. https://doi.org/10.14348/molcells.2018.0430
- Li, L., Khan, N., Hurd, T., Ghosh, A.K., Cheng, C., Molday, R., Heckenlively, J.R., Swaroop, A., and Khanna, H. (2013). Ablation of the X-linked retinitis pigmentosa 2 (Rp2) gene in mice results in opsin mislocalization and photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 54, 4503-4511. https://doi.org/10.1167/iovs.13-12140
- Manifava, M., Smith, M., Rotondo, S., Walker, S., Niewczas, I., Zoncu, R., Clark, J., and Ktistakis, N.T. (2016). Dynamics of mTORC1 activation in response to amino acids. Elife 5, e19960. https://doi.org/10.7554/eLife.19960
- Mann, B.J. and Wadsworth, P. (2019). Kinesin-5 regulation and function in mitosis. Trends Cell Biol. 29, 66-79. https://doi.org/10.1016/j.tcb.2018.08.004
- McDonald, H.B., Stewart, R.J., and Goldstein, L.S. (1990). The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell 63, 1159-1165. https://doi.org/10.1016/0092-8674(90)90412-8
- Menon, S., Dibble, C.C., Talbott, G., Hoxhaj, G., Valvezan, A.J., Takahashi, H., Cantley, L.C., and Manning, B.D. (2014). Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 156, 771-785. https://doi.org/10.1016/j.cell.2013.11.049
- Middleton, K. and Carbon, J. (1994). KAR3-encoded kinesin is a minusend-directed motor that functions with centromere binding proteins (CBF3) on an in vitro yeast kinetochore. Proc. Natl. Acad. Sci. U. S. A. 91, 7212-7216. https://doi.org/10.1073/pnas.91.15.7212
- Nguyen, T.P., Frank, A.R., and Jewell, J.L. (2017). Amino acid and small GTPase regulation of mTORC1. Cell. Logist. 7, e1378794. https://doi.org/10.1080/21592799.2017.1378794
-
Nithianantham, S., Le, S., Seto, E., Jia, W., Leary, J., Corbett, K.D., Moore, J.K., and Al-Bassam, J. (2015). Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble
${\alpha}$ ${\beta}$ -tubulin pool for microtubule dynamics. Elife 4, e08811. https://doi.org/10.7554/eLife.08811 - Noda, Y., Okada, Y., Saito, N., Setou, M., Xu, Y., Zhang, Z., and Hirokawa, N. (2001). KIFC3, a microtubule minus end-directed motor for the apical transport of annexin XIIIb-associated Triton-insoluble membranes. J. Cell Biol. 155, 77-88. https://doi.org/10.1083/jcb.200108042
- Panchaud, N., Peli-Gulli, M.P., and De Virgilio, C. (2013). Amino acid deprivation inhibits TORC1 through a GTPase-activating protein complex for the Rag family GTPase Gtr1. Sci. Signal. 6, ra42. https://doi.org/10.1126/scisignal.2004112
- Paschal, B.M. and Vallee, R.B. (1987). Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330, 181-183. https://doi.org/10.1038/330181a0
- Peng, M., Yin, N., and Li, M.O. (2017). SZT2 dictates GATOR control of mTORC1 signalling. Nature 543, 433-437. https://doi.org/10.1038/nature21378
- Porter, M.E., Scholey, J.M., Stemple, D.L., Vigers, G.P., Vale, R.D., Sheetz, M.P., and McIntosh, J.R. (1987). Characterization of the microtubule movement produced by sea urchin egg kinesin. J. Biol. Chem. 262, 2794-2802. https://doi.org/10.1016/S0021-9258(18)61576-5
- Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290-303. https://doi.org/10.1016/j.cell.2010.02.024
- Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101. https://doi.org/10.1126/science.1106148
- Saxton, R.A., Chantranupong, L., Knockenhauer, K.E., Schwartz, T.U., and Sabatini, D.M. (2016). Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature 536, 229-233. https://doi.org/10.1038/nature19079
- Scholey, J.E., Nithianantham, S., Scholey, J.M., and Al-Bassam, J. (2014). Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers. Elife 3, e02217. https://doi.org/10.7554/eLife.02217
- Sharp, D.J., McDonald, K.L., Brown, H.M., Matthies, H.J., Walczak, C., Vale, R.D., Mitchison, T.J., and Scholey, J.M. (1999). The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles. J. Cell Biol. 144, 125-138. https://doi.org/10.1083/jcb.144.1.125
- Slangy, A., Lane, H.A., d'Herin, P., Harper, M., Kress, M., and Niggt, E.A. (1995). Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159-1169. https://doi.org/10.1016/0092-8674(95)90142-6
- Tseng, K.F., Wang, P., Lee, Y.J., Bowen, J., Gicking, A.M., Guo, L., Liu, B., and Qiu, W. (2018). The preprophase band-associated kinesin-14 OsKCH2 is a processive minus-end-directed microtubule motor. Nat. Commun. 9, 1067. https://doi.org/10.1038/s41467-018-03480-w
- Vale, R.D., Reese, T.S., and Sheetz, M.P. (1985). Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39-50. https://doi.org/10.1016/S0092-8674(85)80099-4
- Wakana, Y., Villeneuve, J., van Galen, J., Cruz-Garcia, D., Tagaya, M., and Malhotra, V. (2013). Kinesin-5/Eg5 is important for transport of CARTS from the trans-Golgi network to the cell surface. J. Cell Biol. 202, 241-250. https://doi.org/10.1083/jcb.201303163
- Walker, R.A., Salmon, E.D., and Endow, S.A. (1990). The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347, 780-782. https://doi.org/10.1038/347780a0
- Wang, X., Campbell, L.E., Miller, C.M., and Proud, C.G. (1998). Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem. J. 334(Pt 1), 261-267. https://doi.org/10.1042/bj3340261
- Wolfson, R.L., Chantranupong, L., Saxton, R.A., Shen, K., Scaria, S.M., Cantor, J.R., and Sabatini, D.M. (2016). Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43-48. https://doi.org/10.1126/science.aab2674
- Wolfson, R.L., Chantranupong, L., Wyant, G.A., Gu, X., Orozco, J.M., Shen, K., Condon, K.J., Petri, S., Kedir, J., Scaria, S.M., et al. (2017). KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543, 438-442. https://doi.org/10.1038/nature21423
- Yang, H., Jiang, X., Li, B., Yang, H.J., Miller, M., Yang, A., Dhar, A., and Pavletich, N.P. (2017). Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552, 368-373. https://doi.org/10.1038/nature25023