DOI QR코드

DOI QR Code

Thermal and physiochemical properties of faba bean (Vicia faba L.) flour and starch

Faba bean 가루 및 녹말의 열역학적 특성과 물리화학적 특성

  • Kim, Hui-Yun (Department of Food Science and Biotechnology, Institute of life Science and Resources, Kyung Hee University) ;
  • Choi, Yohan (Department of Food Science and Biotechnology, Institute of life Science and Resources, Kyung Hee University) ;
  • Jo, Eun-Jeong (Department of Food Science and Biotechnology, Institute of life Science and Resources, Kyung Hee University) ;
  • Baik, Moo-Yeol (Department of Food Science and Biotechnology, Institute of life Science and Resources, Kyung Hee University) ;
  • Choi, Hyun-Wook (Department of Functional Food and Biotechnology, Jeonju University)
  • 김희윤 (경희대학교 생명공학원 식품생명공학과) ;
  • 최요한 (경희대학교 생명공학원 식품생명공학과) ;
  • 조은정 (경희대학교 생명공학원 식품생명공학과) ;
  • 백무열 (경희대학교 생명공학원 식품생명공학과) ;
  • 최현욱 (전주대학교 바이오기능성식품학과)
  • Received : 2020.06.08
  • Accepted : 2020.07.24
  • Published : 2020.08.31

Abstract

In this study, we conducted a physiochemical property analysis using commercial faba bean flour (CFBF), faba bean flour (FBF), and faba bean starch (FBS). We observed that the FBS granules were elliptical and cracked on the surface. Moreover, FBS showed significantly lower solubility and apparent viscosity than FBF and CFBF. With respect to the pasting properties, FBS exhibited a peak viscosity of 1349.3 cP at 94.8℃ and a breakdown of 42.7 cP, whereas FBF and CFBF displayed no pasting properties. The FBS gelatinization enthalpy (12.9 J/g) was relatively high compared with the values obtained for FBF and CFBF (5.9 and 4.6 J/g, respectively). The FBS X-ray diffraction patterns showed a C-type pattern with peaks at diffraction angle (2θ) of 5.9°, 15.2°, 17.3°, and 23.1°, which were the same in FBF and CFBF with relatively low peak intensity. These results represent basic data for using faba bean as a food material.

시중에 분쇄된 상태로 판매되는 CFBF와 faba bean 원물을 직접 분쇄하여 제조한 FBF, 그리고 분쇄한 faba bean 가루에서 알칼리 추출법으로 추출한 FBS의 물리화학적 특성을 확인하였다. FBS의 녹말 입자는 타원형에 표면에 갈라짐이 있으며 CFBF와 FBF는 일정하지 않은 크기의 입자를 보였다. FBS는 상대적으로 낮은 용해도와 겉보기 점도를 보여주었다. CFBF와 FBF는 호화 특성을 나타내지 못한 반면 FBS는 비교적 낮은 trough와 높은 setback값의 호화 특성을 보여주어 차이를 나타냈다. FBS의 호화 엔탈피는 12.9 J/g으로 CFBF와 FBF 보다 높은 값을 나타내었다. 상대결정화도에서도 역시 FSB가 CFBF와 FBF와 비교하여 상대적으로 높은 값을 나타내었다. CFBF와 FBF는 여러 실험들의 결과에서 서로 크게 차이 나지 않고 비슷한 경향의 특성을 확인하였으나 FBS는 CFBF, FBF와는 크게 다른 물리화학적 특징들을 보였다. 이는 서로 다른 단백질 함량 때문이라 판단된다. FBS는 녹말 추출을 위하여 NaOH 용액을 이용하여 단백질을 제거하여 단백질 함량이 CFBF, FBF와 비교했을 때 상당히 낮고 단백질을 제거하기 위한 공정 중 녹말의 변화가 있으며 CFBF와 FBF의 단백질은 녹말과 수분의 반응에 관여하여 물리화학적 특성에 영향을 끼쳤다고 판단되었다. 한국에서는 faba bean 가루와 녹말을 다양하게 사용하고 있지 않은데 이 연구의 결과는 식품산업에 faba bean을 적용하기 위한 기초자료로 사용될 수 있을 것이다.

Keywords

References

  1. Aboubakar YN, Njintang JS, Mbofung CMF. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. J. Food Eng. 86: 294-305 (2008) https://doi.org/10.1016/j.jfoodeng.2007.10.006
  2. Adebooye OC, Singh V. Physico-chemical properties of the flours and starches of two cowpea varieties (Vigna unguiculata (L.) Walp). Innov. Food Sci. Emerg. 9: 92-100 (2008). https://doi.org/10.1016/j.ifset.2007.06.003
  3. Al-Masri SA. Effect of cooked and germinated bean (Vicia Faba) on obesity in rats. J. Anim. Plant Sci. 25: 977-983 (2015)
  4. Ambigaipalan P, Hoover R, Donner E, Liu Q, Jaiswal S, Chibbar R, Nantanga KKM, Seetharaman K. Structure of faba bean, black bean and pinto bean starches at different levels of granule organization and their physicochemical properties. Food Res. Int. 44: 2962-2974 (2011) https://doi.org/10.1016/j.foodres.2011.07.006
  5. Blazek J, Copeland L. Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohyd. Polym. 71: 380-387 (2008) https://doi.org/10.1016/j.carbpol.2007.06.010
  6. Chung HJ, Liu Q, Hoover R. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohyd. Polym. 75: 436-447 (2009) https://doi.org/10.1016/j.carbpol.2008.08.006
  7. FAO Statistical. Food and agriculture organization (FAO) of the United Nations. (2001). http://www.fao.org
  8. Gujska E, Reinhard WD, Khan K. Physicochemical properties of field pea, pinto and navy bean starches. J. Food Sci. 59: 634-636 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb05580.x
  9. Han XZ, Hamaker BR. Location of starch granule-associated proteins revealed by confocal laser scanning microscopy. J. Cereal Sci. 35: 109-116 (2002) https://doi.org/10.1006/jcrs.2001.0420
  10. Hoover R, Manuel H. The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize V starches. J. Cereal Sci. 23: 153-162 (1996a) https://doi.org/10.1006/jcrs.1996.0015
  11. Hoover R, Manuel H. Effect of heat-moisture treatment on the structure and physicochemical properties of legume starches. Int. Food Res. J. 29: 731-750 (1996b) https://doi.org/10.1016/S0963-9969(97)86873-1
  12. Israkarn K, Nakornpanom N, Hongsprabhasa P. Physicochemical properties of starches and proteins in alkali-treated mungbean and cassava starch granules. Carbohyd. Polym. 105: 34-40 (2014) https://doi.org/10.1016/j.carbpol.2014.01.054
  13. Iturriaga L, Lopez B, Aon M. Thermal and physicochemical characterization of seven argentine rice flours and starches. Food Res. Int. 37: 439-447 (2004) https://doi.org/10.1016/j.foodres.2003.12.005
  14. Jayakody L, Hoover R. The effect of lintnerization on cereal starch granules. Int. Food Res. J. 35: 665-680 (2002) https://doi.org/10.1016/S0963-9969(01)00204-6
  15. Li JY, Yeh AI. Functions of starch in formation of starch/meat composite during heating. J. Texture Stud. 33: 341-366 (2002) https://doi.org/10.1111/j.1745-4603.2002.tb01353.x
  16. Lin JY, Ling KH. Studies on favism. I. Isolation of an active principle from faba beans (Vicia faba). J. Formos. Med. Assoc. 61: 484-9 (1962)
  17. Lim ST, Lee JH, Shin DH, Lim HS. Comparison of protein extraction solutions for rice starch isolation and effects of residual protein content on starch pasting properties. Starch-Starke. 51: 120-125 (1999) https://doi.org/10.1002/(SICI)1521-379X(199904)51:4<120::AID-STAR120>3.0.CO;2-A
  18. Martin M, Fitzgerald MA. Proteins in rice grains influence cooking properties. J. Cereal Sci. 36: 285-294 (2002) https://doi.org/10.1006/jcrs.2001.0465
  19. Morrison W. R., Laignelet, B. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1: 9-20 (1983) https://doi.org/10.1016/S0733-5210(83)80004-6
  20. Nara S, Komiya T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch-Starke 35: 407-410 (1983) https://doi.org/10.1002/star.19830351202
  21. Rabey JM, Vered Y, Shabtai H, Graff E, Harsat A, Korczyn AD. Broad bean (Vicia faba) consumption and Parkinson's disease. Adv. Neurobiol. 60: 681-684 (1993)
  22. Tan Y, Corke H. Factor analysis of physicochemical properties of 63 rice varieties. J. Sci. Food Agr. 82: 745-752 (2002) https://doi.org/10.1002/jsfa.1094
  23. Yanez-Farias GA, Moreno-Valencia JG, Falcon-Villa MR, Barron-Hoyos JM. Isolation and partial characterization of starches from dry beans (Phaseolus vulgaris) and chickpeas (Cicer arietinum), grown in Sonora, Mexico. Starch-Starke 49: 341-345 (1997) https://doi.org/10.1002/star.19970490904