참고문헌
- Wang WC, Chau KW, Xu DM, Chen XY. Improving forecasting accuracy of annual runoff time series using ARIMA based on eemd decomposition. Water Resour. Manag. 2015:29:2655-2675. https://doi.org/10.1007/s11269-015-0962-6
- Mislan M, Haviluddim H, Hardwinarto S, Soeparto S, Aipassa M. Rainfall monthly prediction based on artificial neural network:A case study in tenggarong station, east kalimantan-indonesia. Procedia Comput. Sci. 2015;59:142-151. https://doi.org/10.1016/j.procs.2015.07.528
- Reshma T, Reddy KV, Pratap D, Agilan V. Parameters optimization using Fuzzy rule based multi-objective genetic algorithm for an event based rainfall-runoff model. Water Resour. Manag. 2018;32:1501-1516. https://doi.org/10.1007/s11269-017-1884-2
- Tayfur G, Brocca L. Fuzzy logic for rainfall-runoff modelling considering soil moisture. Water Resour. Manag. 2015;29:3519-3533. https://doi.org/10.1007/s11269-015-1012-0
- Akgun, OB, Kentel E. Estimation of streamflow using Takagi-Sugeno fuzzy rule-based model. EPiC Series in Eng. 2018;3:18-25. https://doi.org/10.29007/vzsj
- Asadnia M, Chua L, Qin XS, Talei A. Improved particle swarm optimization-based artificial neural network for rainfall-runoff modeling. J. Hydrol. Eng. 2013;19:1320-1329. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000927
- Cheng CT, Niu WJ, Feng ZK, Shen JJ, Chau KW. Daily reservoir runoff forecasting method using artificial neural network based on quantum-behaved particle swarm optimization. Water 2015;7:4232-4246. https://doi.org/10.3390/w7084232
- Mazandaranizadeh H, Motahari M. Development of a PSO-ANN model for rainfall-runoff response in basins, Case Study: Karaj Basin. Civil Eng. J. 2017;3:35-44. https://doi.org/10.28991/cej-2017-00000070
- Shabani M, Mazahery A, Rahimipour M, Tofigh A, Razavi M. The most accurate ANN learning algorithm for fem prediction of mechanical performance of alloy A356. Kov. Mater. 2012;50:25-31.
- Jang JS. ANFIS: Adaptive-network-based fuzzy inference system. In: IEEE transactions on systems, man, and cybernetics, eds. Piscataway:IEEE; 1993. p. 665-685.
- Jones AHS., Pranolo A, Dianto A, Winiarti S. Prediction of population growth using Sugeno and Adaptive Neuro-Fuzzy Inference System (ANFIS). In: IOP Conference Series eds. Mater. Sci. Eng. 2018;403:012073.
- Azad A, Karami H, Farzin S, Saeedian A, Kashi H, Sayyahi F. Prediction of water quality parameters using ANFIS optimized by intelligence algorithms (Case study: Gorganrood River). KSCE J. Civil Eng. 2018;22:2206-2213. https://doi.org/10.1007/s12205-017-1703-6
- Azad A, Farzin S, Kashi H, Sanikhani H, Karami H, Kisi O. Prediction of river flow using hybrid neuro-fuzzy models. Arab. J. Geosci. 2018:11;718. https://doi.org/10.1007/s12517-018-4079-0
- Rezaeianzadeh M, Tabari H, Yazdi AA, Isik S, Kalin L. Flood flow forecasting using ANN, ANFIS and regression models. Neural Comput. Appl. 2014;25:25-37. https://doi.org/10.1007/s00521-013-1443-6
- Zhou Y, Guo S, Chang FJ. Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts. J. Hydrol. 2019;570:343-355. https://doi.org/10.1016/j.jhydrol.2018.12.040
- Ardakani MAH, Behnia N. Estimation of suspended sediment load in different time steps using hybrid wavelet-ANFIS. Int. J. Hydrol. Sci. Technol. 2018;8:372-392. https://doi.org/10.1504/IJHST.2018.095548
- Yadav RK, Balakrishnan M. Comparative evaluation of ARIMA and ANFIS for modeling of wireless network traffic time series. EURASIP J. Wirel. Comm. Network. 2014;15;1-8.
- Bengio Y, Simard P, Frasconi P, et al. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Network. 1994;5:157-166. https://doi.org/10.1109/72.279181
- Dariane AB, Azimi S. Forecasting streamflow by combination of a genetic input selection algorithm and wavelet transforms using ANFIS models. Hydrol. Sci. J. 2016;61:585-600. https://doi.org/10.1080/02626667.2014.988155
- Qasem SN, Ebtehaj I, Riahi Madavar H. Optimizing ANFIS for sediment transport in open channels using different evolutionary algorithms. J. Appl. Res. Water Waste. 2017;4:290-298.
- Pousinho HMI, Mendes VMF, Catalao JPS. A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal. Energ. Convers. Manage. 2011;52:397-402. https://doi.org/10.1016/j.enconman.2010.07.015
- Jalalkamali A. Using of hybrid fuzzy models to predict spatio-temporal groundwater quality parameters. Earth Sci. Inform. 2015;8:885-894. https://doi.org/10.1007/s12145-015-0222-6
- Basser H, Karami H, Shamshirband S, et al. Hybrid ANFIS-PSO approach for predicting optimum parameters of a protective spur dike. Appl. Soft. Comput. 2015;30:642-649. https://doi.org/10.1016/j.asoc.2015.02.011
- Kisi O, Alizamir M, Zounemat-Kermani M. Modeling groundwater fluctuations by three different evolutionary neural network techniques using hydro-climatic data. Nat. Hazard. 2017;87:367-381. https://doi.org/10.1007/s11069-017-2767-9
- Kisi O, Keshavarzi A, Shiri J, Zounemat-Kermani M, Omran ESE. Groundwater quality modeling using neuro-particle swarm optimization and neuro-differential evolution techniques. Hydrol. Res. 2017;48:1508-1519. https://doi.org/10.2166/nh.2017.206
- Yosefvand F, Shabanlou S, Kardar S. Adaptive neuro-fuzzy Inference system optimization using PSO for predicting sediment transport in sewers. Int. J. Optim. Civil. Eng. 2019;9:331-342.
- Tien Bui D, Khosravi K, Li S, et al. New hybrids of anfis with several optimization algorithms for flood susceptibility modeling. Water 2018;10:1210. https://doi.org/10.3390/w10091210
- Azad A, Farzin S, Kashi H, Sanikhani H, Karami H, Kisi O. Prediction of river flow using hybrid neuro-fuzzy models. Arab. J. Geosci. 2018;11:718. https://doi.org/10.1007/s12517-018-4079-0
- Ehteram M, Afan HA, Dianatikhah M, et al. Assessing the predictability of an improved ANFIS model for monthly streamflow using lagged climate indices as predictors. Water 2019;11:1130. https://doi.org/10.3390/w11061130
- Ghomsheh VS, Shoorehdeli MA, Teshnehlab M. Training ANFIS structure with modified PSO algorithm. In:Mediterranean Conference on Control & Automation; 27-29 June 2007; p. 1-6.
- Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science; 4-6 October 1995; Nagoya. p. 39-43.
- Elbedwehy MN, Zawbaa HM, Ghali N, Hassanien AE. Detection of heart disease using binary particle swarm optimization. In:Federated Conference on Computer Science and Information Systems (FedCSIS); 9-12 September 2012; Wroclaw. p. 177-182.
- Sudheer KP, Gosain AK, Ramasastri S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2002;16:1325-1330. https://doi.org/10.1002/hyp.554
- Tran TT, Giang NN, Duong HN, Nguyen HT, Van Hoai T, Van Nghi V. A comprehensive study on predicting river runoff. In: 9th International Conference on Knowledge and Systems Engineering (KSE); 19-21 October 2017; Hue, Vietnam. p. 251-256.
- Talpur N, Salleh MNM, Hussain K. An investigation of MF on performance of ANFIS for solving classification problems. In: IOP Conference Series: Materials Science and Engineering, eds. Bristol: IOP Publishing ; 2017. p. 012103.
-
Rezakazemi M, Dashti A, Asghari M, Shirazian S.
$H_2$ -selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int. J. Hydrog. Energ. 2017;42:15211-15225. https://doi.org/10.1016/j.ijhydene.2017.04.044 - Diaz-Robles LA, Ortega JC, Fu JS, et al. A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile. Atmos. Environ. 2008;42:8331-8340. https://doi.org/10.1016/j.atmosenv.2008.07.020
- Kim BM, Teffera S, Zeldin MD. Characterization of PM25 and PM10 in the South Coast air basin of Southern California: Part 1-spatial variations. J. Air Waste Manag. Assoc. 2000;50;2034-2044. https://doi.org/10.1080/10473289.2000.10464242
- Rahman M., Islam AS., Nadvi SYM, Rahman RM. (2013). Comparative study of ANFIS and ARIMA model for weather forecasting in Dhaka. In: International Conference on Informatics, Electronics and Vision (ICIEV), p.1-6.
- Tekta SM. Weather forecasting using ANFIS and ARIMA models. Environ. Res. Eng. Manag. 2010;1;5-10.
피인용 문헌
- A self-identification Neuro-Fuzzy inference framework for modeling rainfall-runoff in a Chilean watershed vol.594, 2020, https://doi.org/10.1016/j.jhydrol.2020.125910