DOI QR코드

DOI QR Code

면적의 변화 특성을 이용한 위험 유기물 형상 추출 모델

Dangerous Abandoned Object Extraction Model Using Area Variation Characteristics

  • 김원 (우송대학교 IT융합학부)
  • Kim, Won (Division of IT Convergence, Woosong University)
  • 투고 : 2020.07.07
  • 심사 : 2020.08.20
  • 발행 : 2020.08.28

초록

최근에 미국, 영국, 일본에서 폭발물, 독성 화학물 등에 의한 테러가 공공장소에서 시도되고 있다. 위험물을 공공장소에서 두고 가는 방식은 탐지하기 어려운 방법 중에 하나로 인식되고 있다. 공공장소에는 곳곳에 카메라가 영상을 녹화하고 있지만, 그 영상을 사람이 일일이 모니터링 하는 것은 쉽지 않은 일이다. 최근에는 자동으로 영상을 분석하는 지능형 소프트웨어를 유기물 탐지에 이용하고 있다. Lin 등의 방식은 비교적 높은 유기물 탐지율을 보이고 있으나, 단기 배경 영상의 특성으로 유기물에 관련한 픽셀의 수가 시간이 지날수록 급격히 감소하는 경향이 있어 그 형상 정보를 얻기가 어렵다. 본 논문에서는 면적의 변화 특성을 분석함으로써 유기물의 형태를 성공적으로 추출하기 위한 새로운 기법을 제안한다. 제안한 방식에 대해 실험을 한 결과 선행 연구보다 형태 추출에서 우수한 성능을 보인다.

Recently the terrors have been attempted in the public places of the nations such as United states, England and Japan by explosive things, toxic materials and so on. It is understood that the method in which dangerous objects are put in public places is one of the difficult types in detection. While there are the cameras recording videos for many spots in public places, it is very hard for the security personnel to monitor every videos. Nowadays the smart softwares which can analyzing videos automatically are utilized to detect abandoned objects. The method by Lin et al. shows comparatively high detection rates for abandoned objects but it is not easy to obtain the shape information because there is a tendency that the number of the pixels decreases abruptly along the time goes due to the characteristics of short-term background images. In this research a novel method is proposed to successfully extract the shape of the abandoned object by analysing the characteristics of area variation. The experiment results show that the proposed method has better performance in extracting shape information in comparison with the precedent approach.

키워드

참고문헌

  1. N. Bird, S. Atev, N. Caramelli, R. Martin, O. Masoud & N. Papanikolopulos. (2006). Real Time, Online Detection of Abandoned Objects in Public Areas. Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Florida. DOI: 10.1109/ROBOT.2006.1642279
  2. F. Porikli, Y. Lvanov & T. Haga. (2008). Robust Abandoned Object Detection Using Dual Foregrounds. EURASIP Journal on Advanced in Signal Processing. DOI : 10.1155/2008/197875
  3. W. Kim. (2013). Design of Mobile Security Robot for Detection of Abandoned Dangerous Object. Journal of Korean Institute of Information Technology, 11(9), 181-187.
  4. Y. Tian, R. S. Feris, H. Liu, A. Hampapur & M. T. Sun. (2011). Robust detection of abandoned and removed objects in complex surveillance videos. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(5), 565-576. DOI : 10.1109/TSMCC.2010.2065803
  5. Q. Fan & S. Pankanti. (2011). Modeling of temporarily static objects for robust abandoned object detection in urban surveillance. Proceedings of IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), 36-41. DOI : 10.1109/AVSS.2011.6027290
  6. H. H. Liao, J. Y. Chang & L. G. Chen. (2008). A localized approach to abandoned luggage detection with foreground-mask sampling. Proceedings of IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance, 132-139. DOI : 10.1109/AVSS.2008.9
  7. F. Lv, X. Song, B. Wu, V. K. Singh & R. Nevatia. (2006). Left-luggage detection using Bayesian inference. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 83-90.
  8. E. Auvinet, E. Grossmann, C. Rougier, M. Dahmane & Meunier. (2006). Left-luggage detection using homographies and simple heuristics. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 51-58.
  9. N. Dalal & B. Triggs. (2005). Histograms of oriented gradients for human detection. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 886-893. DOI : 10.1109/CVPR.2005.177
  10. K. Lin, S. C. Chen, C. S. Chen, D. Lin & Y. Hung. (2015). Abandoned Object Detection via Temporal Consistency Modeling and Back-Tracing Verification for Visual Surveillance. IEEE Transactions on Information Forensics and Security, 10(7), 1359-1370. DOI : 10.1109/TIFS.2015.2408263
  11. V. Kadam, N. Shinde, S. Pol & S. Godse. (2016). Abandoned Object Detection. Imperial Journal of Interdisciplinary Research (IJIR, An On-line Journal), 2(6).
  12. J. Lee, J. Lee & K. Lee. (2016). A Scheme of Security Drone Convergence Service using Cam-Shift Algorithm, Journal of Korea Convergence Society, 7(5), 29-34. DOI : 10.15207/JKCS.2016.7.5.029
  13. B. Kang & K. Lee. (2016). Fire Alarm Solutions Through the Convergence of Image Processing Technology and M2M, Journal of Korea Convergence Society, 7(1), 37-42. DOI : 10.15207/JKCS.2016.7.1.037
  14. K. Kim, G. Geum & C. Jang, (2017). Research on the Convergence of CCTV Video Information with Disaster Recognition and Real-time Crisis Response System, Journal of Korea Convergence Society, 8(3), 15-22. DOI : 10.15207/JKCS.2017.8.3.015
  15. H. Kim, Y. Park, K. Kim & S. Lee. (2019). Modified HOG Feature Extraction for Pedestrian Tracking, Journal of Korea Convergence Society, 10(3), 39-47. DOI : 10.15207/JKCS.2019.10.3.039