DOI QR코드

DOI QR Code

KR-39038, a Novel GRK5 Inhibitor, Attenuates Cardiac Hypertrophy and Improves Cardiac Function in Heart Failure

  • Lee, Jeong Hyun (Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology) ;
  • Seo, Ho Won (Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology) ;
  • Ryu, Jae Yong (Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology) ;
  • Lim, Chae Jo (Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology) ;
  • Yi, Kyu Yang (Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology) ;
  • Oh, Kwang-Seok (Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Byung Ho (Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology)
  • Received : 2020.07.17
  • Accepted : 2020.08.05
  • Published : 2020.09.01

Abstract

G protein-coupled receptor kinase 5 (GRK5) has been considered as a potential target for the treatment of heart failure as it has been reported to be an important regulator of pathological cardiac hypertrophy. To discover novel scaffolds that selectively inhibit GRK5, we have identified a novel small molecule inhibitor of GRK5, KR-39038 [7-((3-((4-((3-aminopropyl)amino)butyl)amino)propyl)amino)-2-(2-chlorophenyl)-6-fluoroquinazolin-4(3H)-one]. KR-39038 exhibited potent inhibitory activity (IC50 value=0.02 µM) against GRK5 and significantly inhibited angiotensin II-induced cellular hypertrophy and HDAC5 phosphorylation in neonatal cardiomyocytes. In the pressure overload-induced cardiac hypertrophy mouse model, the daily oral administration of KR-39038 (30 mg/kg) for 14 days showed a 43% reduction in the left ventricular weight. Besides, KR-39038 treatment (10 and 30 mg/kg/day, p.o.) showed significant preservation of cardiac function and attenuation of myocardial remodeling in a rat model of chronic heart failure following coronary artery ligation. These results suggest that potent GRK5 inhibitor could effectively attenuate both cardiac hypertrophy and dysfunction in experimental heart failure, and KR-39038 may be useful as an effective GRK5 inhibitor for pharmaceutical applications.

Keywords

Acknowledgement

This research was supported by Korea Drug Development Fund (KDDF) funded by MSIP, MOTIE and MOHW (KDDF-201603-01, Republic of Korea).

References

  1. Aguero, J., Almenar, L., Monto, F., Oliver, E., Sanchez-Lazaro, I., Vicente, D., Martinez-Dolz, L., D'Ocon, P., Rueda, J. and Salvador, A. (2012) Myocardial G protein receptor-coupled kinase expression correlates with functional parameters and clinical severity in advanced heart failure. J. Card. Fail. 18, 53-61. https://doi.org/10.1016/j.cardfail.2011.10.008
  2. Belmonte, S. L. and Blaxall, B. C. (2012) G protein-coupled receptor kinase 5: exploring its hype in cardiac hypertrophy. Circ. Res. 111, 957-958. https://doi.org/10.1161/CIRCRESAHA.112.278432
  3. Bologna, Z., Teoh, J. P., Bayoumi, A. S., Tang, Y. and Kim, I. M. (2017) Biased G protein-coupled receptor signaling: new player in modulating physiology and pathology. Biomol. Ther. (Seoul) 25, 12-25. https://doi.org/10.4062/biomolther.2016.165
  4. de Lucia, C., Grisanti, L. A., Ibetti. J., Lucchese, A. M., Gao, E., Tilley, D. G., Leosco, D., Ferrara, N., Rengo, G. and Koch, W. J. (2017) GRK5-mediated exacerbation of ischemic heart failure involves cardiac immune-inflammatory responses. Cir. Res. 121, A396.
  5. Dickhout, J. G., Carlisle, R. E. and Austin, R. C. (2011) Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circ. Res. 108, 629-642. https://doi.org/10.1161/CIRCRESAHA.110.226803
  6. Dzimiri, N., Muiya, P., Andres, E. and Al-Halees, Z. (2004) Differential functional expression of human myocardial G protein receptor kinases in left ventricular cardiac diseases. Eur. J. Pharmacol. 489, 167-177. https://doi.org/10.1016/j.ejphar.2004.03.015
  7. Gold, J. I., Gao, E., Shang, X., Premont, R. T. and Koch, W. J. (2012) Determining the absolute requirement of G protein-coupled receptor kinase 5 for pathological cardiac hypertrophy: short communication. Circ. Res. 111, 1048-1053. https://doi.org/10.1161/CIRCRESAHA.112.273367
  8. Gold, J. I., Martini, J. S., Hullmann, J., Gao, E., Chuprun, J. K., Lee, L., Tilley, D. G., Rabinowitz, J. E., Bossuyt, J., Bers, D. M. and Koch, W. J. (2013) Nuclear translocation of cardiac G protein-Coupled Receptor kinase 5 downstream of select Gq-activating hypertrophic ligands is a calmodulin-dependent process. PLoS ONE 8, e57324. https://doi.org/10.1371/journal.pone.0057324
  9. Homan, K. T., Wu, E., Cannavo, A., Koch, W. J. and Tesmer, J. J. (2014) Identification and characterization of amlexanox as a G protein-coupled receptor kinase 5 inhibitor. Molecules 19, 16937-16949. https://doi.org/10.3390/molecules191016937
  10. Hullmann, J. E., Grisanti, L. A., Makarewich, C. A., Gao, E., Gold, J. I., Chuprun, J. K., Tilley, D. G., Houser, S. R. and Koch, W. J. (2014) GRK5-mediated exacerbation of pathological cardiac hypertrophy involves facilitation of nuclear NFAT activity. Circ. Res. 115, 976-985. https://doi.org/10.1161/CIRCRESAHA.116.304475
  11. Hullmann, J., Traynham, C. J., Coleman, R. C. and Koch, W. J. (2016) The expanding GRK interactome: implications in cardiovascular disease and potential for therapeutic development. Pharmacol. Res. 110, 52-64. https://doi.org/10.1016/j.phrs.2016.05.008
  12. Islam, K. N., Bae, J. W., Gao, E. and Koch, W. J. (2013) Regulation of nuclear factor ${\kappa}B$ ($NF-{\kappa}B$) in the nucleus of cardiomyocytes by G protein-coupled receptor kinase 5 (GRK5). J. Biol. Chem. 288, 35683-35689. https://doi.org/10.1074/jbc.M113.529347
  13. Laudette, M., Coluccia, A., Sainte-Marie, Y., Solari, A., Fazal, L., Sicard, P., Silvestri, R., Mialet-Perez, J., Pons, S., Ghaleh, B., Blondeau, J. P. and Lezoualc'h, F. (2019) Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress. Cardiovasc. Res. 115, 1766-1777.
  14. Lieu, M. and Koch, W. J. (2019) GRK2 and GRK5 as therapeutic targets and their role in maladaptive and pathological cardiac hypertrophy. Expert Opin. Ther. Targets 23, 201-214. https://doi.org/10.1080/14728222.2019.1575363
  15. Martini, J. S., Raake, P., Vinge, L. E., DeGeorge, B. R., Jr., Chuprun, J. K., Harris, D. M., Gao, E., Eckhart, A. D., Pitcher, J. A. and Koch, W. J. (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc. Natl. Acad. Sci. U.S.A. 105, 12457-12462. https://doi.org/10.1073/pnas.0803153105
  16. Oda, T., Yamamoto, T., Kato, T., Uchinoumi, H., Fukui, G., Hamada, Y., Nanno, T., Ishiguchi, H., Nakamura, Y., Okamoto, Y., Kono, M., Okuda, S., Kobayashi, S., Bers, D. M. and Yano, M. (2018) Nuclear translocation of calmodulin in pathological cardiac hypertrophy originates from ryanodine receptor bound calmodulin. J. Mol. Cell. Cardiol. 125, 87-97. https://doi.org/10.1016/j.yjmcc.2018.10.011
  17. Park, C. H., Lee, J. H., Lee, M. Y., Lee, J. H., Lee, B. H. and Oh, K. S. (2016) A novel role of G protein-coupled receptor kinase 5 in urotensin II-stimulated cellular hypertrophy in $H9c2_{UT}$ cells. Mol. Cell. Biochem. 422, 151-160. https://doi.org/10.1007/s11010-016-2814-y
  18. Pfleger, J., Gresham, K. and Koch, W. J. (2019) G protein-coupled receptor kinases as therapeutic targets in the heart. Nat. Rev. Cardiol. 16, 612-622. https://doi.org/10.1038/s41569-019-0220-3
  19. Ping, P., Anzai, T., Gao, M. and Hammond, H. K. (1997) Adenylyl cyclase and G protein receptor kinase expression during development of heart failure. Am. J. Physiol. 273, H707-H717.
  20. Sorriento, D., Santulli, G., Ciccarelli, M., Maione, A. S., Illario, M., Trimarco, B. and Iaccarino, G. (2018) The amino-terminal domain of GRK5 inhibits cardiac hypertrophy through the regulation of calcium-calmodulin dependent transcription factors. Int. J. Mol. Sci. 19, 861. https://doi.org/10.3390/ijms19030861
  21. Traynham, C. J., Cannavo, A., Zhou, Y., Vouga, A. G., Woodall, B. P., Hullmann, J., Ibetti, J., Gold, J. I., Chuprun, J. K., Gao, E. and Koch, W. J. (2015) Differential role of G protein-coupled receptor kinase 5 in physiological versus pathological cardiac hypertrophy. Circ. Res. 117, 1001-1012. https://doi.org/10.1161/CIRCRESAHA.115.306961
  22. Traynham, C. J., Hullmann, J. and Koch, W. J. (2016) Canonical and non-canonical actions of GRK5 in the heart. J. Mol. Cell. Cardiol. 92, 196-202. https://doi.org/10.1016/j.yjmcc.2016.01.027
  23. Zhang, Y., Matkovich, S. J., Duan, X., Gold, J. I., Koch, W. J. and Dorn, G. W., 2nd (2011) Nuclear effects of G-protein receptor kinase 5 on histone deacetylase 5-regulated gene transcription in heart failure. Circ. Heart Fail. 4, 659-668. https://doi.org/10.1161/CIRCHEARTFAILURE.111.962563

Cited by

  1. Generation of Highly Selective, Potent, and Covalent G Protein-Coupled Receptor Kinase 5 Inhibitors vol.64, pp.1, 2020, https://doi.org/10.1021/acs.jmedchem.0c01522
  2. Isoproterenol-Induced Cardiomyopathy Recovery Intervention: Amlexanox and Forskolin Enhances the Resolution of Catecholamine Stress-Induced Maladaptive Myocardial Remodeling vol.8, 2020, https://doi.org/10.3389/fcvm.2021.719805
  3. Targeting GRK5 for Treating Chronic Degenerative Diseases vol.22, pp.4, 2021, https://doi.org/10.3390/ijms22041920