DOI QR코드

DOI QR Code

Synergistic Induction of Apoptosis by the Combination of an Axl Inhibitor and Auranofin in Human Breast Cancer Cells

  • Ryu, Yeon-Sang (Center for Metareceptome Research, College of Pharmacy, Chung-Ang University) ;
  • Shin, Sangyun (Center for Metareceptome Research, College of Pharmacy, Chung-Ang University) ;
  • An, Hong-Gyu (Center for Metareceptome Research, College of Pharmacy, Chung-Ang University) ;
  • Kwon, Tae-Uk (Center for Metareceptome Research, College of Pharmacy, Chung-Ang University) ;
  • Baek, Hyoung-Seok (Center for Metareceptome Research, College of Pharmacy, Chung-Ang University) ;
  • Kwon, Yeo-Jung (Center for Metareceptome Research, College of Pharmacy, Chung-Ang University) ;
  • Chun, Young-Jin (Center for Metareceptome Research, College of Pharmacy, Chung-Ang University)
  • Received : 2020.04.03
  • Accepted : 2020.06.01
  • Published : 2020.09.01

Abstract

Axl receptor tyrosine kinase has been implicated in cancer progression, invasion, and metastasis in various cancer types. Axl overexpression has been observed in many cancers, and selective inhibitors of Axl, including R428, may be promising therapeutic agents for several human cancers, such as breast, lung, and pancreatic cancers. Here, we examined the cell growth inhibition mediated by R428 and auranofin individually as well as in combination in the human breast cancer cell lines MCF-7 and MDA-MB-231 to identify new advanced combination treatments for human breast cancer. Our data showed that combination therapy with R428 and auranofin markedly inhibited cancer cell proliferation. Isobologram analyses of these cells indicated a clear synergism between R428 and auranofin with a combination index value of 0.73. The combination treatment promoted apoptosis as indicated by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. Cancer cell migration was also significantly inhibited by this combination treatment. Moreover, we found that combination therapy significantly increased the expression level of Bax, a mitochondrial proapoptotic factor, but decreased that of the X-linked inhibitor of apoptosis protein. Furthermore, the suppression of cell viability and induction of Bax expression by the combination treatment were recovered by treatment with N-acetylcysteine. In conclusion, our data demonstrated that combined treatment with R428 and auranofin synergistically induced apoptosis in human breast cancer cells and may thus serve as a novel and valuable approach for cancer therapy.

Keywords

References

  1. Bayat Mokhtari, R., Homayouni, T. S., Baluch, N., Morgatskaya, E., Kumar, S., Das, B. and Yeger, H. (2017) Combination therapy in combating cancer. Oncotarget 8, 38022-38043. https://doi.org/10.18632/oncotarget.16723
  2. Cazanave, S. C., Wang, X., Zhou, H., Rahmani, M., Grant, S., Durrant, D. E., Klaassen, C. D., Yamamoto, M. and Sanyal, A. J. (2014) Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 21, 1303-1312. https://doi.org/10.1038/cdd.2014.49
  3. Chu, C., Gao, X., Li, X., Zhang, X., Ma, R., Jia, Y., Li, D., Wang, D. and Xu, F. (2020) Involvement of estrogen $receptor-{\alpha}$ in the activation of Nrf2-antioxidative signaling pathways by silibinin in pancreatic $\beta$-cells. Biomol. Ther. (Seoul) 28, 163-171. https://doi.org/10.4062/biomolther.2019.071
  4. Cuadrado, A., Manda, G., Hassan, A., Alcaraz, M. J., Barbas, C., Daiber, A., Ghezzi, P., Leon, R., Lopez, M. G., Oliva, B., Pajares, M., Rojo, A. I., Robledinos-Anton, N., Valverde, A. M., Guney, E. and Schmidt, H. (2018) Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol. Rev. 70, 348-383. https://doi.org/10.1124/pr.117.014753
  5. Cuadrado, A., Martin-Moldes, Z., Ye, J. and Lastres-Becker, I. (2014) Transcription factors NRF2 and $NF-{\kappa}B$ are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J. Biol. Chem. 289, 15244-15258. https://doi.org/10.1074/jbc.M113.540633
  6. Faix, J. and Weber, I. (2013) A dual role model for active Rac1 in cell migration. Small GTPases 4, 110-115. https://doi.org/10.4161/sgtp.23476
  7. Fiskus, W., Saba, N., Shen, M., Ghias, M., Liu, J., Gupta, S. D., Chauhan, L., Rao, R., Gunewardena, S., Schorno, K., Austin, C. P., Maddocks, K., Byrd, J., Melnick, A., Huang, P., Wiestner, A. and Bhalla, K. N. (2014) Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia. Cancer Res. 74, 2520-2532. https://doi.org/10.1158/0008-5472.CAN-13-2033
  8. Gay, C. M., Balaji, K. and Byers, L. A. (2017) Giving AXL the axe: targeting AXL in human malignancy. Br. J. Cancer 116, 415-423. https://doi.org/10.1038/bjc.2016.428
  9. Gelmon, K., Dent, R., Mackey, J. R., Laing, K., McLeod, D. and Verma, S. (2012) Targeting triple-negative breast cancer: optimising therapeutic outcomes. Ann. Oncol. 23, 2223-2234. https://doi.org/10.1093/annonc/mds067
  10. Goyette, M. A., Duhamel, S., Aubert, L., Pelletier, A., Savage, P., Thibault, M. P., Johnson, R. M., Carmeliet, P., Basik, M., Gaboury, L., Muller, W. J., Park, M., Roux, P. P., Gratton, J. P. and Cote, J. F. (2018) The receptor tyrosine kinase Axl is required at multiple steps of the metastatic cascade during HER2-positive breast cancer progression. Cell Rep. 23, 1476-1490. https://doi.org/10.1016/j.celrep.2018.04.019
  11. Holland, S. J., Pan, A., Franci, C., Hu, Y., Chang, B., Li, W., Duan, M., Torneros, A., Yu, J., Heckrodt, T. J., Zhang, J., Ding, P., Apatira, A., Chua, J., Brandt, R., Pine, P., Goff, D., Singh, R., Payan, D. G. and Hitoshi, Y. (2010) R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 70, 1544-1554. https://doi.org/10.1158/0008-5472.CAN-09-2997
  12. Jin, S. and Ye, K. (2013) Targeted drug delivery for breast cancer treatment. Recent Pat. Anticancer Drug Discov. 8, 143-153.
  13. Jung, J. (2019) Role of G protein-coupled estrogen receptor in cancer progression. Toxicol. Res. 35, 209-214. https://doi.org/10.5487/TR.2019.35.3.209
  14. Kapur, A., Beres, T., Rathi, K., Nayak, A. P., Czarnecki, A., Felder, M., Gillette, A., Ericksen, S. S., Sampene, E., Skala, M. C., Barroilhet, L. and Patankar, M. S. (2018) Oxidative stress via inhibition of the mitochondrial electron transport and Nrf-2-mediated anti-oxidative response regulate the cytotoxic activity of plumbagin. Sci. Rep. 8, 1073. https://doi.org/10.1038/s41598-018-19261-w
  15. Katoh, H., Hiramoto, K. and Negishi, M. (2006) Activation of Rac1 by RhoG regulates cell migration. J. Cell Sci. 119, 56-65. https://doi.org/10.1242/jcs.02720
  16. Katz, H. and Alsharedi, M. (2017) Immunotherapy in triple-negative breast cancer. Med. Oncol. 35, 13.
  17. Koorstra, J. B., Karikari, C. A., Feldmann, G., Bisht, S., Rojas, P. L., Offerhaus, G. J., Alvarez, H. and Maitra, A. (2009) The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biol. Ther. 8, 618-626. https://doi.org/10.4161/cbt.8.7.7923
  18. Leconet, W., Chentouf, M., du Manoir, S., Chevalier, C., Sirvent, A., Ait-Arsa, I., Busson, M., Jarlier, M., Radosevic-Robin, N., Theillet, C., Chalbos, D., Pasquet, J. M., Pelegrin, A., Larbouret, C. and Robert, B. (2017) Therapeutic activity of anti-Axl antibody against triple-negative breast cancer patient-derived xenografts and metastasis. Clin. Cancer Res. 23, 2806-2816. https://doi.org/10.1158/1078-0432.CCR-16-1316
  19. Lee, J. E., Kwon, Y. J., Baek, H. S., Ye, D. J., Cho, E., Choi, H. K., Oh, K. S. and Chun, Y. J. (2017) Synergistic induction of apoptosis by combination treatment with mesupron and auranofin in human breast cancer cells. Arch. Pharm. Res. 40, 746-759. https://doi.org/10.1007/s12272-017-0923-0
  20. Lee, W. P., Wen, Y., Varnum, B. and Hung, M. C. (2002) Akt is required for Axl-Gas6 signaling to protect cells from E1A-mediated apoptosis. Oncogene 21, 329-336. https://doi.org/10.1038/sj.onc.1205066
  21. Lu, K., Alcivar, A. L., Ma, J., Foo, T. K., Zywea, S., Mahdi, A., Huo, Y., Kensler, T. W., Gatza, M. L. and Xia, B. (2017) NRF2 induction supporting breast cancer cell survival is enabled by oxidative stress-induced DPP3-Keap1 interaction. Cancer Res. 77, 2881-2892. https://doi.org/10.1158/0008-5472.CAN-16-2204
  22. Maes, M. E., Schlamp, C. L. and Nickells, R. W. (2017) Live-cell imaging to measure Bax recruitment kinetics to mitochondria during apoptosis. PLoS ONE 12, e0184434. https://doi.org/10.1371/journal.pone.0184434
  23. Miller, M. A., Oudin, M. J., Sullivan, R. J., Wang, S. J., Meyer, A. S., Im, H., Frederick, D. T., Tadros, J., Griffith, L. G., Lee, H., Weissleder, R., Flaherty, K. T., Gertler, F. B. and Lauffenburger, D. A. (2016) Reduced proteolytic shedding of receptor tyrosine kinases is a post-translational mechanism of kinase inhibitor resistance. Cancer Discov. 6, 382-399. https://doi.org/10.1158/2159-8290.CD-15-0933
  24. Mine, N., Yamamoto, S., Kufe, D. W., Von Hoff, D. D. and Kawabe, T. (2014) Activation of Nrf2 pathways correlates with resistance of NSCLC cell lines to CBP501 in vitro. Mol. Cancer Ther. 13, 2215-2225. https://doi.org/10.1158/1535-7163.MCT-13-0808
  25. Nagini, S. (2017) Breast cancer: current molecular therapeutic targets and new players. Anticancer Agents Med. Chem. 17, 152-163. https://doi.org/10.2174/1871520616666160502122724
  26. Oommen, D., Yiannakis, D. and Jha, A. N. (2016) BRCA1 deficiency increases the sensitivity of ovarian cancer cells to auranofin. Mutat. Res. 784-785, 8-15. https://doi.org/10.1016/j.mrfmmm.2015.11.002
  27. Pawlowski, J. and Kraft, A. S. (2000) Bax-induced apoptotic cell death. Proc. Natl. Acad. Sci. U.S.A. 97, 529-531. https://doi.org/10.1073/pnas.97.2.529
  28. Probst, B. L., McCauley, L., Trevino, I., Wigley, W. C. and Ferguson, D. A. (2015) Cancer cell growth is differentially affected by constitutive activation of NRF2 by Keap1 deletion and pharmacological activation of NRF2 by the synthetic triterpenoid, RTA 405. PLoS ONE 10, e0135257. https://doi.org/10.1371/journal.pone.0135257
  29. Richa, S., Dey, P., Park, C., Yang, J., Son, J. Y., Park, J. H., Lee, S. H., Ahn, M. Y., Kim, I. S., Moon, H. R. and Kim, H. S. (2020) A new histone deacetylase inhibitor, MHY4381, induces apoptosis via generation of reactive oxygen species in human prostate cancer cells. Biomol. Ther. (Seoul) 28, 184-194. https://doi.org/10.4062/biomolther.2019.074
  30. Shamas-Din, A., Kale, J., Leber, B. and Andrews, D. W. (2013) Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb. Perspect. Biol. 5, a008714.
  31. Shaw, I. C. (1999) Gold-based therapeutic agents. Chem. Rev. 99, 2589-2600. https://doi.org/10.1021/cr980431o
  32. Sun, S. Y. (2010) N-acetylcysteine, reactive oxygen species and beyond. Cancer Biol. Ther. 9, 109-110. https://doi.org/10.4161/cbt.9.2.10583
  33. Tallarida, R. J. (2001) Drug synergism: its detection and applications. J. Pharmacol. Exp. Ther. 298, 865-872.
  34. Tang, B., Tang, F., Wang, Z., Qi, G., Liang, X., Li, B., Yuan, S., Liu, J., Yu, S. and He, S. (2016) Upregulation of $Akt/NF-{\kappa}B$-regulated inflammation and Akt/Bad-related apoptosis signaling pathway involved in hepatic carcinoma process: suppression by carnosic acid nanoparticle. Int. J. Nanomedicine 11, 6401-6420. https://doi.org/10.2147/IJN.S101285
  35. Varghese, E. and Busselberg, D. (2014) Auranofin, an anti-rheumatic gold compound, modulates apoptosis by elevating the intracellular calcium concentration in MCF-7 breast cancer cells. Cancers (Basal) 6, 2243-2258. https://doi.org/10.3390/cancers6042243
  36. Vidula, N. and Bardia, A. (2017) Targeted therapy for metastatic triple negative breast cancer: the next frontier in precision oncology. Oncotarget 8, 106167-106168. https://doi.org/10.18632/oncotarget.22580
  37. Wang, C., Jin, H., Wang, N., Fan, S., Wang, Y., Zhang, Y., Wei, L., Tao, X., Gu, D., Zhao, F., Fang, J., Yao, M. and Qin, W. (2016) Gas6/Axl axis contributes to chemoresistance and metastasis in breast cancer through kat/GSK-$3{\beta}/{\beta}$-catenin signaling. Theranostics 6, 1205-1219. https://doi.org/10.7150/thno.15083
  38. Yao, H., He, G., Yan, S., Chen, C., Song, L., Rosol, T. J. and Deng, X. (2017) Triple-negative breast cancer: is there a treatment on the horizon. Oncotarget 8, 1913-1924. https://doi.org/10.18632/oncotarget.12284
  39. Zhang, P., Singh, A., Yegnasubramanian, S., Esopi, D., Kombairaju, P., Bodas, M., Wu, H., Bova, S. G. and Biswal, S. (2010) Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther. 9, 336-346. https://doi.org/10.1158/1535-7163.MCT-09-0589
  40. Zhang, Y. X., Knyazev, P. G., Cheburkin, Y. V., Sharma, K., Knyazev, Y. P., Orfi, L., Szabadkai, I., Daub, H., Keri, G. and Ullrich, A. (2008) Axl is a potential target for therapeutic intervention in breast cancer progression. Cancer Res. 68, 1905-1915. https://doi.org/10.1158/0008-5472.CAN-07-2661

Cited by

  1. Potential Anticancer Activity of Auranofin vol.141, pp.3, 2020, https://doi.org/10.1248/yakushi.20-00179-2