References
- Arnér, E. S. and Holmgren, A. (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267, 6102-6109. https://doi.org/10.1046/j.1432-1327.2000.01701.x
- Baffy, G., Brunt, E. M. and Caldwell, S. H. (2012) Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J. Hepatol. 56, 1384-1391. https://doi.org/10.1016/j.jhep.2011.10.027
- Becker, K., Gromer, S., Schirmer, R. H. and Muller, S. (2000) Thioredoxin reductase as a pathophysiological factor and drug target. Eur. J. Biochem. 267, 6118-6125. https://doi.org/10.1046/j.1432-1327.2000.01703.x
- Cheng, S., Zhang, X., Feng, Q., Chen, J., Shen, L., Yu, P., Yang, L., Chen, D., Zhang, H., Sun, W. and Chen, X. (2019) Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway. Life Sci. 227, 82-93. https://doi.org/10.1016/j.lfs.2019.04.040
- Cheng, Y. and Qi, Y. (2017) Current progresses in metal-based anticancer complexes as mammalian TrxR inhibitors. Anticancer Agents Med. Chem. 17, 1046-1069.
- Conklin, K. A. (2000) Dietary antioxidants during cancer chemotherapy: impact on chemotherapeutic effectiveness and development of side effects. Nutr. Cancer 37, 1-18. https://doi.org/10.1207/S15327914NC3701_1
- Cox, A. G., Brown, K. K., Arner, E. S. and Hampton, M. B. (2008) The thioredoxin reductase inhibitor auranofin triggers apoptosis through a Bax/Bak-dependent process that involves peroxiredoxin 3 oxidation. Biochem. Pharmacol. 76, 1097-1109. https://doi.org/10.1016/j.bcp.2008.08.021
- Emens, L. A. and Middleton, G. (2015) The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol. Res. 3, 436-443. https://doi.org/10.1158/2326-6066.CIR-15-0064
- Fang, J. and Holmgren, A. (2006) Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo. J. Am. Chem. Soc. 128, 1879-1885. https://doi.org/10.1021/ja057358l
- Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I. and Bray, F. (2018) Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer, Lyon. Available from: https://gco.iarc.fr/today/ [accessed 2019 Mar 25].
- Gamet-Payrastre, L., Li, P., Lumeau, S., Cassar, G., Dupont, M. A., Chevolleau, S., Gasc, N., Tulliez, J. and Terce, F. (2000) Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60, 1426-1433.
- Gerl, R. and Vaux, D. L. (2005) Apoptosis in the development and treatment of cancer. Carcinogenesis 26, 263-270. https://doi.org/10.1093/carcin/bgh283
- Green, D. R. and Llambi, F. (2015) Cell death signaling. Cold Spring Harb. Perspect. Biol. 7, a006080.
- Hasan, M. M., Islam, M. S., Hoque, K. M. F., Haque, A. and Reza, M. A. (2019) Effect of Citrus macroptera fruit pulp juice on alteration of caspase pathway rendering anti-proliferative activity against Ehrlich's ascites carcinoma in mice. Toxicol. Res. 35, 271-277. https://doi.org/10.5487/TR.2019.35.3.271
- Herman-Antosiewicz, A., Johnson, D. E. and Singh, S. V. (2006) Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res. 66, 5828-5835. https://doi.org/10.1158/0008-5472.CAN-06-0139
- Hwang-Bo, H., Jeong, J. W., Han, M. H., Park, C., Hong, S. H., Kim, G. Y., Moon, S. K., Cheong, J., Kim, W. J., Yoo, Y. H. and Choi, Y. H. (2017) Auranofin, an inhibitor of thioredoxin reductase, induces apoptosis in hepatocellular carcinoma Hep3B cells by generation of reactive oxygen species. Gen. Physiol. Biophys. 36, 117-128. https://doi.org/10.4149/gpb_2016043
- Hwang-Bo, H., Lee, W. S., Nagappan, A., Kim, H. J., Panchanathan, R., Park, C., Chang, S. H., Kim, N. D., Leem, S. H., Chang, Y. C., Kwon, T. K., Cheong, J. H., Kim, G. S., Jung, J. M., Shin, S. C., Hong, S. C. and Choi, Y. H. (2019) Morin enhances auranofin anticancer activity by up-regulation of DR4 and DR5 and modulation of Bcl-2 through reactive oxygen species generation in Hep3B human hepatocellular carcinoma cells. Phytother. Res. 33, 1384-1393. https://doi.org/10.1002/ptr.6329
- Isab, A. A. and Shaw, C. F., 3rd (1990) Synthesis of thionato(triethylphosphine) gold(I) complexes: analogues of "auranofin" an antiarthritic drug. J. Inorg. Biochem. 38, 95-100. https://doi.org/10.1016/0162-0134(90)84017-J
- Jia, J. J., Geng, W. S., Wang, Z. Q., Chen, L. and Zeng, X. S. (2019) The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother. Pharmacol. 84, 453-470. https://doi.org/10.1007/s00280-019-03869-4
- Kerantzas, C. A. and Jacobs, W. R., Jr. (2017) Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. mBio 8, e01586-16.
- Kulik, L. and El-Serag, H. B. (2019) Epidemiology and management of hepatocellular carcinoma. Gastroenterology 156, 477-491. https://doi.org/10.1053/j.gastro.2018.08.065
- Li, Y., Zhang, T., Korkaya, H., Liu, S., Lee, H. F., Newman, B., Yu, Y., Clouthier, S. G., Schwartz, S. J., Wicha, M. S. and Sun, D. (2010) Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res. 16, 2580-2590. https://doi.org/10.1158/1078-0432.CCR-09-2937
- Likhitsup, A., Razumilava, N. and Parikh, N. D. (2019) Treatment for advanced hepatocellular carcinoma: current standard and the future. Clin. Liver Dis. (Hoboken) 13, 13-19. https://doi.org/10.1002/cld.782
- Lincoln, D. T., Ali, Emadi, E. M., Tonissen, K. F. and Clarke, F. M. (2003) The thioredoxin-thioredoxin reductase system: over-expression in human cancer. Anticancer Res. 23, 2425-2433.
- Llovet, J. M., Montal, R., Sia, D. and Finn, R. S. (2018) Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15, 599-616. https://doi.org/10.1038/s41571-018-0073-4
- Lu, J. and Holmgren, A. (2014) The thioredoxin antioxidant system. Free. Radic. Biol. Med. 66, 75-87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036
- Madeira, J. M., Gibson, D. L., Kean, W. F. and Klegeris, A. (2012) The biological activity of auranofin: implications for novel treatment of diseases. Inflammopharmacology 20, 297-306. https://doi.org/10.1007/s10787-012-0149-1
- Marzano, C., Gandin, V., Folda, A., Scutari, G., Bindoli, A. and Rigobello, M. P. (2007) Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic. Biol. Med. 42, 872-881. https://doi.org/10.1016/j.freeradbiomed.2006.12.021
- McKelvey, E. M., Gottlieb, J. A., Wilson, H. E., Haut, A., Talley, R. W., Stephens, R., Lane, M., Gamble, J. F., Jones, S. E., Grozea, P. N., Gutterman, J., Coltman, C. and Moon, T. E. (1976) Hydroxyldaunomycin (Adriamycin) combination chemotherapy in malignant lymphoma. Cancer 38, 1484-1493. https://doi.org/10.1002/1097-0142(197610)38:4<1484::AID-CNCR2820380407>3.0.CO;2-I
- Mi, L., Wang, X., Govind, S., Hood, B. L., Veenstra, T. D., Conrads, T. P., Saha, D. T., Goldman, R. and Chung, F. L. (2007) The role of protein binding in induction of apoptosis by phenethyl isothiocyanate and sulforaphane in human non-small lung cancer cells. Cancer Res. 67, 6409-6416. https://doi.org/10.1158/0008-5472.CAN-07-0340
- Moon, D. O., Kang, S. H., Kim, K. C., Kim, M. O., Choi, Y. H. and Kim, G. Y. (2010) Sulforaphane decreases viability and telomerase activity in hepatocellular carcinoma Hep3B cells through the reactive oxygen species-dependent pathway. Cancer Lett. 295, 260-266. https://doi.org/10.1016/j.canlet.2010.03.009
- Niedzwiecki, A., Roomi, M. W., Kalinovsky, T. and Rath, M. (2016) Anticancer efficacy of polyphenols and their combinations. Nutrients 8, 552. https://doi.org/10.3390/nu8090552
- Omata, Y., Folan, M., Shaw, M., Messer, R. L., Lockwood, P. E., Hobbs, D., Bouillaguet, S., Sano, H., Lewis, J. B. and Wataha, J. C. (2006) Sublethal concentrations of diverse gold compounds inhibit mammalian cytosolic thioredoxin reductase (TrxR1). Toxicol. In Vitro 20, 882-890. https://doi.org/10.1016/j.tiv.2006.01.012
- Ouyang, Y., Peng, Y., Li, J., Holmgren, A. and Lu, J. (2018) Modulation of thiol-dependent redox system by metal ions via thioredoxin and glutaredoxin systems. Metallomics 10, 218-228. https://doi.org/10.1039/C7MT00327G
- Phan, M. A. T., Paterson, J., Bucknall, M. and Arcot, J. (2018) Interactions between phytochemicals from fruits and vegetables: effects on bioactivities and bioavailability. Crit. Rev. Food Sci. Nutr. 58, 1310-1329. https://doi.org/10.1080/10408398.2016.1254595
- Pritchard, J. R., Lauffenburger, D. A. and Hemann, M. T. (2012) Understanding resistance to combination chemotherapy. Drug Resist. Updat. 15, 249-257. https://doi.org/10.1016/j.drup.2012.10.003
- Ralph, S. J., Nozuhur, S., ALHulais, R. A., Rodriguez-Enriquez, S. and Moreno-Sanchez, R. (2019) Repurposing drugs as pro-oxidant redox modifiers to eliminate cancer stem cells and improve the treatment of advanced stage cancers. Med. Res. Rev. 39, 2397-2426. https://doi.org/10.1002/med.21589
- Ren, X., Zou, L., Lu, J. and Holmgren, A. (2018) Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radic. Biol. Med. 127, 238-247. https://doi.org/10.1016/j.freeradbiomed.2018.05.081
- Robak, T., Blonski, J. Z. and Robak, P. (2016) Antibody therapy alone and in combination with targeted drugs in chronic lymphocytic leukemia. Semin. Oncol. 43, 280-290. https://doi.org/10.1053/j.seminoncol.2016.02.010
- Robbins, R. J., Keck, A. S., Banuelos, G. and Finley, J. W. (2005) Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and sulforaphane content of broccoli. J. Med. Food 8, 204-214. https://doi.org/10.1089/jmf.2005.8.204
- Schirrmacher, V. (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int. J. Oncol. 54, 407-419.
- Trotti, A., Byhardt, R., Stetz, J., Gwede, C., Corn, B., Fu, K., Gunderson, L., McCormick, B., Morrisintegral, M., Rich, T., Shipley, W. and Curran, W. (2000) Common toxicity criteria: version 2.0. an improved reference for grading the acute effects of cancer treatment: impact on radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 47, 13-47. https://doi.org/10.1016/S0360-3016(99)00559-3
- Urig, S. and Becker, K. (2006) On the potential of thioredoxin reductase inhibitors for cancer therapy. Semin. Cancer Biol. 16, 452-465. https://doi.org/10.1016/j.semcancer.2006.09.004
- U.S. National Library of Medicine, ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ct2/home/.
- Yu, J. S. and Cui, W. (2016) Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 143, 3050-3060. https://doi.org/10.1242/dev.137075
- Zhang, N., Li, F., Gao, J., Zhang, S. and Wang, Q. (2020) Osteopontin accelerates the development and metastasis of bladder cancer via activating JAK1/STAT1 pathway. Genes Genomics 42, 467-475. https://doi.org/10.1007/s13258-019-00907-6
- Zhong, L., Arner, E. S. and Holmgren, A. (2000) Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc. Natl. Acad. Sci. U.S.A. 97, 5854-5859. https://doi.org/10.1073/pnas.100114897
- Zorova, L. D., Popkov, V. A., Plotnikov, E. Y., Silachev, D. N., Pevzner, I. B., Jankauskas, S. S., Babenko, V. A., Zorov, S. D., Balakireva, A. V., Juhaszova, M., Sollott, S. J. and Zorov, D. B. (2018) Mitochondrial membrane potential. Anal. Biochem. 552, 50-59. https://doi.org/10.1016/j.ab.2017.07.009
Cited by
- Loganin Inhibits Lipopolysaccharide-Induced Inflammation and Oxidative Response through the Activation of the Nrf2/HO-1 Signaling Pathway in RAW264.7 Macrophages vol.44, pp.6, 2021, https://doi.org/10.1248/bpb.b21-00176
- Auranofin and ICG-001 Emerge Synergistic Anti-tumor Effect on Canine Breast Cancer by Inducing Apoptosis via Mitochondrial Pathway vol.8, 2020, https://doi.org/10.3389/fvets.2021.772687
- Coptisine induces autophagic cell death through down-regulation of PI3K/Akt/mTOR signaling pathway and up-regulation of ROS-mediated mitochondrial dysfunction in hepatocellular carcinoma Hep3B cells vol.697, 2021, https://doi.org/10.1016/j.abb.2020.108688
- Spermidine Attenuates Oxidative Stress-Induced Apoptosis via Blocking Ca 2+ Overload in Retinal Pigment Epithelial Cells Independently of ROS vol.22, pp.3, 2021, https://doi.org/10.3390/ijms22031361
- Urban Aerosol Particulate Matter Promotes Necrosis and Autophagy via Reactive Oxygen Species-Mediated Cellular Disorders that Are Accompanied by Cell Cycle Arrest in Retinal Pigment Epithelial Cells vol.10, pp.2, 2020, https://doi.org/10.3390/antiox10020149
- Betulinic Acid Restricts Human Bladder Cancer Cell Proliferation In Vitro by Inducing Caspase-Dependent Cell Death and Cell Cycle Arrest, and Decreasing Metastatic Potential vol.26, pp.5, 2020, https://doi.org/10.3390/molecules26051381
- ROS-Mediated Anti-Tumor Effect of Coptidis Rhizoma against Human Hepatocellular Carcinoma Hep3B Cells and Xenografts vol.22, pp.9, 2021, https://doi.org/10.3390/ijms22094797
- Gold(I) Phosphine Derivatives with Improved Selectivity as Topically Active Drug Leads to Overcome 5-Nitroheterocyclic Drug Resistance in Trichomonas vaginalis vol.64, pp.10, 2020, https://doi.org/10.1021/acs.jmedchem.0c01926
- Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma vol.22, pp.11, 2020, https://doi.org/10.3390/ijms22115938
- Induction of Apoptosis by Isoalantolactone in Human Hepatocellular Carcinoma Hep3B Cells through Activation of the ROS-Dependent JNK Signaling Pathway vol.13, pp.10, 2020, https://doi.org/10.3390/pharmaceutics13101627
- Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae vol.29, pp.6, 2021, https://doi.org/10.4062/biomolther.2021.030
- Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway vol.15, pp.6, 2020, https://doi.org/10.4162/nrp.2021.15.6.686