References
- Aletaha, D. and Smolen, J. S. (2018) Diagnosis and management of rheumatoid arthritis: a review. JAMA 320, 1360-1372. https://doi.org/10.1001/jama.2018.13103
- Annamalai, P. and Thangam, E. B. (2017) Local and systemic profiles of inflammatory cytokines in carrageenan-induced paw inflammation in rats. Immunol. Invest. 46, 274-283. https://doi.org/10.1080/08820139.2016.1248562
- Bao, F., Tao, L. and Zhang, H. (2019) Neuroprotective effect of natural alkaloid fangchinoline against oxidative glutamate toxicity: involvement of keap1-Nrf2 axis regulation. Cell. Mol. Neurobiol. 39, 1177-1186. https://doi.org/10.1007/s10571-019-00711-6
- Brand, D. D., Latham, K. A. and Rosloniec, E. F. (2007) Collagen-induced arthritis. Nat. Protoc. 2, 1269-1275. https://doi.org/10.1038/nprot.2007.173
- Burrage, P. S., Mix, K. S. and Brinckerhoff, C. E. (2006) Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529-543. https://doi.org/10.2741/1817
- Bustamante, M. F., Garcia-Carbonell, R., Whisenant, K. D. and Guma, M. (2017) Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res. Ther. 19, 1-12. https://doi.org/10.1186/s13075-016-1210-z
- Choi, H. S., Kim, H. S., Min, K. R., Kim, Y., Lim, H. K., Chang, Y. K. and Chung, M. W. (2000) Anti-inflammatory effects of fangchinoline and tetrandrine. J. Ethnopharmacol. 69, 173-179. https://doi.org/10.1016/S0378-8741(99)00141-5
- Fujiwara, N. and Kobayashi, K. (2005) Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy 4, 281-286. https://doi.org/10.2174/1568010054022024
- Hansra, P., Moran, E. L., Fornasier, V. L. and Bogoch, E. R. (2000) Carrageenan-induced arthritis in the rat. Inflammation 24, 141-155. https://doi.org/10.1023/A:1007033610430
- Heidari, B. (2011) Rheumatoid arthritis: early diagnosis and treatment outcomes. Caspian J. Intern. Med. 2, 161-170.
- Hristova, M., Yordanov, M. and Ivanovska, N. (2003) Effect of fangchinoline in murine models of multiple organ dysfunction syndrome and septic shock. Inflamm. Res. 52, 1-7. https://doi.org/10.1007/s000110300007
- Jiang, Y., Liu, J., Zhou, Z., Liu, K. and Liu, C. (2018) Fangchinoline protects against renal injury in diabetic nephropathy by modulating the MAPK signaling pathway. Exp. Clin. Endocrinol. Diabetes 126, 1-7. https://doi.org/10.1055/a-0650-8694
- Kay, J. and Calabrese, L. (2004) The role of interleukin-1 in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 43 Suppl 3, iii2-iii9. https://doi.org/10.1093/rheumatology/keg439
- Li, X., Yang, Z., Han, W., Lu, X., Jin, S., Yang, W., Li, J., He, W. and Qian, Y. (2017) Fangchinoline suppresses the proliferation, invasion and tumorigenesis of human osteosarcoma cells through the inhibition of PI3K and downstream signaling pathways. Int. J. Mol. Med. 40, 311-318. https://doi.org/10.3892/ijmm.2017.3013
- Mérarchi, M., Sethi, G., Fan, L., Mishra, S., Arfuso, F. and Ahn, K. S. (2018) Molecular targets modulated by fangchinoline in tumor cells and preclinical models. Molecules 23, 2538. https://doi.org/10.3390/molecules23102538
- Müller-Ladner, U., Pap, T., Gay, R. E., Neidhart, M. and Gay, S. (2005) Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 1, 102-110. https://doi.org/10.1038/ncprheum0047
- Neugebauer, V. (2013) Arthritis model, kaolin-carrageenan-inducedarthritis (knee). In Encyclopedia of Pain, 2nd ed. (G. F. Gebhart and R. F. Schmidt, Eds.), pp. 190-195. Springer, Heidelberg.
- Pietrosimone, K., Jin, M., Poston, B. and Liu, P. (2015) Collagen-induced arthritis: a model for murine autoimmune arthritis. Bio Protoc. 5, e1626.
- Schett, G., Tohidast-Akrad, M., Smolen, J. S., Schmid, B. J., Steiner, C. W., Bitzan, P., Zenz, P., Redlich, K., Xu, Q. and Steiner, G. (2000) Activation, differential localization, and regulation of the stress-activated protein kinases, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase, in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum. 43, 2501-2512. https://doi.org/10.1002/1529-0131(200011)43:11<2501::AID-ANR18>3.0.CO;2-K
- Shan, L., Tong, L., Hang, L. and Fan, H. (2019) Fangchinoline supplementation attenuates inflammatory markers in experimental rheumatoid arthritis-induced rats. Biomed. Pharmacother. 111, 142-150. https://doi.org/10.1016/j.biopha.2018.12.043
-
Simmonds, R. E. and Foxwell, B. M. (2008) Signalling, inflammation and arthritis:
$NF-{\kappa}B$ and its relevance to arthritis and inflammation. Rheumatology 47, 584-590. https://doi.org/10.1093/rheumatology/kem298 - Siouti, E. and Andreakos, E. (2019) The many facets of macrophages in rheumatoid arthritis. Biochem. Pharmacol. 165, 152-169. https://doi.org/10.1016/j.bcp.2019.03.029
- Thalhamer, T., McGrath, M. A. and Harnett, M. M. (2008) MAPKs and their relevance to arthritis and inflammation. Rheumatology 47, 409-414. https://doi.org/10.1093/rheumatology/kem297
- Wang, B., Xing, Z., Wang, F., Yuan, X. and Zhang, Y. (2017) Fangchinoline inhibits migration and causes apoptosis of human breast cancer MDA-MB-231 cells. Oncol. Lett. 14, 5307-5312.
Cited by
- Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of Ibuprofen against rheumatoid arthritis vol.610, 2020, https://doi.org/10.1016/j.ijpharm.2021.121242