DOI QR코드

DOI QR Code

Methamphetamine-Induced Neuronal Damage: Neurotoxicity and Neuroinflammation

  • 투고 : 2020.03.24
  • 심사 : 2020.06.25
  • 발행 : 2020.09.01

초록

Methamphetamine (METH) is a highly addictive psychostimulant and one of the most widely abused drugs worldwide. The continuous use of METH eventually leads to drug addiction and causes serious health complications, including attention deficit, memory loss and cognitive decline. These neurological complications are strongly associated with METH-induced neurotoxicity and neuroinflammation, which leads to neuronal cell death. The current review investigates the molecular mechanisms underlying METH-mediated neuronal damages. Our analysis demonstrates that the process of neuronal impairment by METH is closely related to oxidative stress, transcription factor activation, DNA damage, excitatory toxicity and various apoptosis pathways. Thus, we reach the conclusion here that METH-induced neuronal damages are attributed to the neurotoxic and neuroinflammatory effect of the drug. This review provides an insight into the mechanisms of METH addiction and contributes to the discovery of therapeutic targets on neurological impairment by METH abuse.

키워드

참고문헌

  1. Abekawa, T., Ohmori, T. and Koyama, T. (1994) Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens. Brain Res. 643, 276-281. https://doi.org/10.1016/0006-8993(94)90033-7
  2. Ares-Santos, S., Granado, N. and Moratalla, R. (2013) The role of dopamine receptors in the neurotoxicity of methamphetamine. J. Intern. Med. 273, 437-453. https://doi.org/10.1111/joim.12049
  3. Bachtell, R., Hutchinson, M. R., Wang, X., Rice, K. C., Maier, S. F. and Watkins, L. R. (2015) Targeting the toll of drug abuse: the translational potential of toll-like receptor 4. CNS Neurol. Disord. Drug Targets 14, 692-699. https://doi.org/10.2174/1871527314666150529132503
  4. Bahar, E., Kim, H. and Yoon, H. (2016) ER stress-mediated signaling: action potential and Ca(2+) as key players. Int. J. Mol. Sci. 17, 1558. https://doi.org/10.3390/ijms17091558
  5. Baldwin, H. A., Colado, M. I., Murray, T. K., De Souza, R. J. and Green, A. R. (1993) Striatal dopamine release in vivo following neurotoxic doses of methamphetamine and effect of the neuroprotective drugs, chlormethiazole and dizocilpine. Br. J. Pharmacol. 108, 590-596. https://doi.org/10.1111/j.1476-5381.1993.tb12847.x
  6. Barco, A., Patterson, S. L., Alarcon, J. M., Gromova, P., Mata-Roig, M., Morozov, A. and Kandel, E. R. (2005) Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron 48, 123-137. https://doi.org/10.1016/j.neuron.2005.09.005
  7. Battaglia, G., Fornai, F., Busceti, C. L., Aloisi, G., Cerrito, F., De Blasi, A., Melchiorri, D. and Nicoletti, F. (2002) Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity. J. Neurosci. 22, 2135-2141. https://doi.org/10.1523/JNEUROSCI.22-06-02135.2002
  8. Beaumont, T. L., Yao, B., Shah, A., Kapatos, G. and Loeb, J. A. (2012) Layer-specific CREB target gene induction in human neocortical epilepsy. J. Neurosci. 32, 14389-14401. https://doi.org/10.1523/JNEUROSCI.3408-12.2012
  9. Beauvais, G., Atwell, K., Jayanthi, S., Ladenheim, B. and Cadet, J. L. (2011) Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS ONE 6, e28946. https://doi.org/10.1371/journal.pone.0028946
  10. Besnard, A., Bouveyron, N., Kappes, V., Pascoli, V., Pages, C., Heck, N., Vanhoutte, P. and Caboche, J. (2011) Alterations of molecular and behavioral responses to cocaine by selective inhibition of Elk-1 phosphorylation. J. Neurosci. 31, 14296-14307. https://doi.org/10.1523/JNEUROSCI.2890-11.2011
  11. Billod, J. M., Lacetera, A., Guzman-Caldentey, J. and Martin-Santamaria, S. (2016) Computational approaches to toll-like receptor 4 modulation. Molecules 21, 994. https://doi.org/10.3390/molecules21080994
  12. Brempelis, K. J., Yuen, S. Y., Schwarz, N., Mohar, I. and Crispe, I. N. (2017) Central role of the TIR-domain-containing adaptor-inducing interferon-beta (TRIF) adaptor protein in murine sterile liver injury. Hepatology 65, 1336-1351. https://doi.org/10.1002/hep.29078
  13. Cadet, J. L., Jayanthi, S. and Deng, X. (2005) Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review. Neurotox. Res. 8, 199-206. https://doi.org/10.1007/BF03033973
  14. Cadet, J. L. and Krasnova, I. N. (2009) Molecular bases of methamphetamine-induced neurodegeneration. Int. Rev. Neurobiol. 88, 101-119.
  15. Castino, R., Bellio, N., Nicotra, G., Follo, C., Trincheri, N. F. and Isidoro, C. (2007) Cathepsin D-Bax death pathway in oxidative stressed neuroblastoma cells. Free Radic. Biol. Med. 42, 1305-1316. https://doi.org/10.1016/j.freeradbiomed.2006.12.030
  16. Chamorro, A., Dirnagl, U., Urra, X. and Planas, A. M. (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 15, 869-881. https://doi.org/10.1016/S1474-4422(16)00114-9
  17. Chao, J., Zhang, Y., Du, L., Zhou, R., Wu, X., Shen, K. and Yao, H. (2017) Molecular mechanisms underlying the involvement of the sigma-1 receptor in methamphetamine-mediated microglial polarization. Sci. Rep. 7, 11540. https://doi.org/10.1038/s41598-017-11065-8
  18. Chen, J., Rusnak, M., Lombroso, P. J. and Sidhu, A. (2009) Dopamine promotes striatal neuronal apoptotic death via ERK signaling cascades. Eur. J. Neurosci. 29, 287-306. https://doi.org/10.1111/j.1460-9568.2008.06590.x
  19. Chen, L., Huang, E., Wang, H., Qiu, P. and Liu, C. (2013) RNA interference targeting alpha-synuclein attenuates methamphetamineinduced neurotoxicity in SH-SY5Y cells. Brain Res. 1521, 59-67. https://doi.org/10.1016/j.brainres.2013.05.016
  20. Choi, J. H., Choi, A. Y., Yoon, H., Choe, W., Yoon, K. S., Ha, J., Yeo, E. J. and Kang, I. (2010) Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction. Exp. Mol. Med. 42, 811-822. https://doi.org/10.3858/emm.2010.42.12.084
  21. Chu, P. W., Seferian, K. S., Birdsall, E., Truong, J. G., Riordan, J. A., Metcalf, C. S., Hanson, G. R. and Fleckenstein, A. E. (2008) Differential regional effects of methamphetamine on dopamine transport. Eur. J. Pharmacol. 590, 105-110. https://doi.org/10.1016/j.ejphar.2008.05.028
  22. Dang, D. K., Shin, E. J., Nam, Y., Ryoo, S., Jeong, J. H., Jang, C. G., Nabeshima, T., Hong, J. S. and Kim, H. C. (2016) Apocynin prevents mitochondrial burdens, microglial activation, and pro-apoptosis induced by a toxic dose of methamphetamine in the striatum of mice via inhibition of p47phox activation by ERK. J. Neuroinflammation 13, 12. https://doi.org/10.1186/s12974-016-0478-x
  23. Davis, S., Vanhoutte, P., Pages, C., Caboche, J. and Laroche, S. (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563-4572. https://doi.org/10.1523/JNEUROSCI.20-12-04563.2000
  24. Dawson, T. M. and Dawson, V. L. (2017) Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu. Rev. Pharmacol. Toxicol. 57, 437-454. https://doi.org/10.1146/annurev-pharmtox-010716-105001
  25. Dean, A. C., Groman, S. M., Morales, A. M. and London, E. D. (2013) An evaluation of the evidence that methamphetamine abuse causes cognitive decline in humans. Neuropsychopharmacology 38, 259-274. https://doi.org/10.1038/npp.2012.179
  26. Deng, X., Jayanthi, S., Ladenheim, B., Krasnova, I. N. and Cadet, J. L. (2002) Mice with partial deficiency of c-Jun show attenuation of methamphetamine-induced neuronal apoptosis. Mol. Pharmacol. 62, 993-1000. https://doi.org/10.1124/mol.62.5.993
  27. Du, S. H., Qiao, D. F., Chen, C. X., Chen, S., Liu, C., Lin, Z., Wang, H. and Xie, W. B. (2017) Toll-like receptor 4 mediates methamphetamine-induced neuroinflammation through Caspase-11 signaling pathway in astrocytes. Front. Mol. Neurosci. 10, 409. https://doi.org/10.3389/fnmol.2017.00409
  28. Elkashef, A., Vocci, F., Hanson, G., White, J., Wickes, W. and Tiihonen, J. (2008) Pharmacotherapy of methamphetamine addiction: an update. Subst. Abus. 29, 31-49. https://doi.org/10.1080/08897070802218554
  29. Eyerman, D. J. and Yamamoto, B. K. (2007) A rapid oxidation and persistent decrease in the vesicular monoamine transporter 2 after methamphetamine. J. Neurochem. 103, 1219-1227. https://doi.org/10.1111/j.1471-4159.2007.04837.x
  30. Fischer, R. and Maier, O. (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid. Med. Cell. Longev. 2015, 610813.
  31. Fleckenstein, A. E., Volz, T. J. and Hanson, G. R. (2009) Psychostimulant-induced alterations in vesicular monoamine transporter-2 function: neurotoxic and therapeutic implications. Neuropharmacology 56 Suppl 1, 133-138. https://doi.org/10.1016/j.neuropharm.2008.07.002
  32. Fleckenstein, A. E., Volz, T. J., Riddle, E. L., Gibb, J. W. and Hanson, G. R. (2007) New insights into the mechanism of action of amphetamines. Annu. Rev. Pharmacol. Toxicol. 47, 681-698. https://doi.org/10.1146/annurev.pharmtox.47.120505.105140
  33. Galluzzi, L., Blomgren, K. and Kroemer, G. (2009) Mitochondrial membrane permeabilization in neuronal injury. Nat. Rev. Neurosci. 10, 481-494. https://doi.org/10.1038/nrn2665
  34. German, C. L., Hanson, G. R. and Fleckenstein, A. E. (2012) Amphetamine and methamphetamine reduce striatal dopamine transporter function without concurrent dopamine transporter relocalization. J. Neurochem. 123, 288-297. https://doi.org/10.1111/j.1471-4159.2012.07875.x
  35. Gorlach, A., Klappa, P. and Kietzmann, T. (2006) The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal. 8, 1391-1418. https://doi.org/10.1089/ars.2006.8.1391
  36. Granado, N., Ares-Santos, S. and Moratalla, R. (2013) Methamphetamine and Parkinson's disease. Parkinsons Dis. 2013, 308052.
  37. Hayashi, T., Justinova, Z., Hayashi, E., Cormaci, G., Mori, T., Tsai, S. Y., Barnes, C., Goldberg, S. R. and Su, T. P. (2010) Regulation of sigma-1 receptors and endoplasmic reticulum chaperones in the brain of methamphetamine self-administering rats. J. Pharmacol. Exp. Ther. 332, 1054-1063. https://doi.org/10.1124/jpet.109.159244
  38. Hedges, D. M., Obray, J. D., Yorgason, J. T., Jang, E. Y., Weerasekara, V. K., Uys, J. D., Bellinger, F. P. and Steffensen, S. C. (2018) Methamphetamine induces dopamine release in the nucleus accumbens through a sigma receptor-mediated pathway. Neuropsychopharmacology 43, 1405-1414. https://doi.org/10.1038/npp.2017.291
  39. Hogan, K. A., Staal, R. G. and Sonsalla, P. K. (2000) Analysis of VMAT2 binding after methamphetamine or MPTP treatment: disparity between homogenates and vesicle preparations. J. Neurochem. 74, 2217-2220. https://doi.org/10.1046/j.1471-4159.2000.0742217.x
  40. Itzhak, Y., Gandia, C., Huang, P. L. and Ali, S. F. (1998) Resistance of neuronal nitric oxide synthase-deficient mice to methamphetamine-induced dopaminergic neurotoxicity. J. Pharmacol. Exp. Ther. 284, 1040-1047.
  41. Itzhak, Y., Martin, J. L. and Ail, S. F. (2000) nNOS inhibitors attenuate methamphetamine-induced dopaminergic neurotoxicity but not hyperthermia in mice. Neuroreport 11, 2943-2946. https://doi.org/10.1097/00001756-200009110-00022
  42. Jayanthi, S., Deng, X., Bordelon, M., McCoy, M. T. and Cadet, J. L. (2001) Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex. FASEB J. 15, 1745-1752. https://doi.org/10.1096/fj.01-0025com
  43. Jayanthi, S., Deng, X., Noailles, P. A., Ladenheim, B. and Cadet, J. L. (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J. 18, 238-251. https://doi.org/10.1096/fj.03-0295com
  44. Johannessen, M. and Moens, U. (2007) Multisite phosphorylation of the cAMP response element-binding protein (CREB) by a diversity of protein kinases. Front. Biosci. 12, 1814-1832. https://doi.org/10.2741/2190
  45. Kahlig, K. M. and Galli, A. (2003) Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine. Eur. J. Pharmacol. 479, 153-158. https://doi.org/10.1016/j.ejphar.2003.08.065
  46. Kohno, M., Link, J., Dennis, L. E., McCready, H., Huckans, M., Hoffman, W. F. and Loftis, J. M. (2019) Neuroinflammation in addiction: a review of neuroimaging studies and potential immunotherapies. Pharmacol. Biochem. Behav. 179, 34-42. https://doi.org/10.1016/j.pbb.2019.01.007
  47. Koumenis, C., Naczki, C., Koritzinsky, M., Rastani, S., Diehl, A., Sonenberg, N., Koromilas, A. and Wouters, B. G. (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol. Cell. Biol. 22, 7405-7416. https://doi.org/10.1128/MCB.22.21.7405-7416.2002
  48. Krasnova, I. N., Justinova, Z. and Cadet, J. L. (2016) Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology (Berl.) 233, 1945-1962. https://doi.org/10.1007/s00213-016-4235-8
  49. Lazzeri, G., Lenzi, P., Busceti, C. L., Ferrucci, M., Falleni, A., Bruno, V., Paparelli, A. and Fornai, F. (2007) Mechanisms involved in the formation of dopamine-induced intracellular bodies within striatal neurons. J. Neurochem. 101, 1414-1427. https://doi.org/10.1111/j.1471-4159.2006.04429.x
  50. Lee, M. Y., Heo, J. S. and Han, H. J. (2006) Dopamine regulates cell cycle regulatory proteins via cAMP, Ca(2+)/PKC, MAPKs, and NF-kappaB in mouse embryonic stem cells. J. Cell. Physiol. 208, 399-406. https://doi.org/10.1002/jcp.20674
  51. Li, Y. H., Wang, H. J. and Qiao, D. F. (2008) Effect of methamphetamine on the microglial cells and activity of nitric oxide synthases in rat striatum. Nan Fang Yi Ke Da Xue Xue Bao 28, 1789-1791.
  52. Lin, M., Sambo, D. and Khoshbouei, H. (2016) Methamphetamine regulation of firing activity of dopamine neurons. J. Neurosci. 36, 10376-10391. https://doi.org/10.1523/JNEUROSCI.1392-16.2016
  53. Liu, X., Silverstein, P. S., Singh, V., Shah, A., Qureshi, N. and Kumar, A. (2012) Methamphetamine increases LPS-mediated expression of IL-8, TNF-alpha and IL-1beta in human macrophages through common signaling pathways. PLoS ONE 7, e33822. https://doi.org/10.1371/journal.pone.0033822
  54. Loftis, J. M. and Janowsky, A. (2014) Neuroimmune basis of methamphetamine toxicity. Int. Rev. Neurobiol. 118, 165-197. https://doi.org/10.1016/B978-0-12-801284-0.00007-5
  55. Majdi, F., Taheri, F., Salehi, P., Motaghinejad, M. and Safari, S. (2019) Cannabinoids delta(9)-tetrahydrocannabinol and cannabidiol may be effective against methamphetamine induced mitochondrial dysfunction and inflammation by modulation of Toll-like type-4(Toll-like 4) receptors and NF-kappaB signaling. Med. Hypotheses 133, 109371.
  56. Matsumoto, R. R., Seminerio, M. J., Turner, R. C., Robson, M. J., Nguyen, L., Miller, D. B. and O'Callaghan, J. P. (2014) Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia. Pharmacol. Ther. 144, 28-40. https://doi.org/10.1016/j.pharmthera.2014.05.001
  57. Meredith, C. W., Jaffe, C., Ang-Lee, K. and Saxon, A. J. (2005) Implications of chronic methamphetamine use: a literature review. Harv. Rev. Psychiatry 13, 141-154. https://doi.org/10.1080/10673220591003605
  58. Mizoguchi, H., Yamada, K., Mizuno, M., Mizuno, T., Nitta, A., Noda, Y. and Nabeshima, T. (2004) Regulations of methamphetamine reward by extracellular signal-regulated kinase 1/2/ets-like gene-1 signaling pathway via the activation of dopamine receptors. Mol. Pharmacol. 65, 1293-1301. https://doi.org/10.1124/mol.65.5.1293
  59. Moratalla, R., Khairnar, A., Simola, N., Granado, N., Garcia-Montes, J. R., Porceddu, P. F., Tizabi, Y., Costa, G. and Morelli, M. (2017) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog. Neurobiol. 155, 149-170. https://doi.org/10.1016/j.pneurobio.2015.09.011
  60. Nam, Y., Wie, M. B., Shin, E. J., Nguyen, T. T., Nah, S. Y., Ko, S. K., Jeong, J. H., Jang, C. G. and Kim, H. C. (2015) Ginsenoside Re protects methamphetamine-induced mitochondrial burdens and proapoptosis via genetic inhibition of protein kinase C delta in human neuroblastoma dopaminergic SH-SY5Y cell lines. J. Appl. Toxicol. 35, 927-944. https://doi.org/10.1002/jat.3093
  61. Nguyen, L., Lucke-Wold, B. P., Mookerjee, S. A., Cavendish, J. Z., Robson, M. J., Scandinaro, A. L. and Matsumoto, R. R. (2015) Role of sigma-1 receptors in neurodegenerative diseases. J. Pharmacol. Sci. 127, 17-29. https://doi.org/10.1016/j.jphs.2014.12.005
  62. Nickell, J. R., Siripurapu, K. B., Vartak, A., Crooks, P. A. and Dwoskin, L. P. (2014) The vesicular monoamine transporter-2: an important pharmacological target for the discovery of novel therapeutics to treat methamphetamine abuse. Adv. Pharmacol. 69, 71-106. https://doi.org/10.1016/B978-0-12-420118-7.00002-0
  63. Ohno, M., Yoshida, H. and Watanabe, S. (1994) NMDA receptormediated expression of Fos protein in the rat striatum following methamphetamine administration: relation to behavioral sensitization. Brain Res. 665, 135-140. https://doi.org/10.1016/0006-8993(94)91163-0
  64. Panenka, W. J., Procyshyn, R. M., Lecomte, T., MacEwan, G. W., Flynn, S. W., Honer, W. G. and Barr, A. M. (2013) Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend. 129, 167-179. https://doi.org/10.1016/j.drugalcdep.2012.11.016
  65. Park, J. H., Seo, Y. H., Jang, J. H., Jeong, C. H., Lee, S. and Park, B. (2017) Asiatic acid attenuates methamphetamine-induced neuroinflammation and neurotoxicity through blocking of NF-kB/STAT3/ERK and mitochondria-mediated apoptosis pathway. J. Neuroinflammation 14, 240. https://doi.org/10.1186/s12974-017-1009-0
  66. Riddle, E. L., Fleckenstein, A. E. and Hanson, G. R. (2006) Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J. 8, E413- E418. https://doi.org/10.1007/BF02854914
  67. Robbins, T. W., Ersche, K. D. and Everitt, B. J. (2008) Drug addiction and the memory systems of the brain. Ann. N. Y. Acad. Sci. 1141, 1-21. https://doi.org/10.1196/annals.1441.020
  68. Rothman, R. B., Baumann, M. H., Dersch, C. M., Romero, D. V., Rice, K. C., Carroll, F. I. and Partilla, J. S. (2001) Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 39, 32-41. https://doi.org/10.1002/1098-2396(20010101)39:1<32::AID-SYN5>3.0.CO;2-3
  69. Ruscher, K. and Wieloch, T. (2015) The involvement of the sigma-1 receptor in neurodegeneration and neurorestoration. J. Pharmacol. Sci. 127, 30-35. https://doi.org/10.1016/j.jphs.2014.11.011
  70. Rusyniak, D. E. (2011) Neurologic manifestations of chronic methamphetamine abuse. Neurol. Clin. 29, 641-655. https://doi.org/10.1016/j.ncl.2011.05.004
  71. Saha, K., Sambo, D., Richardson, B. D., Lin, L. M., Butler, B., Villarroel, L. and Khoshbouei, H. (2014) Intracellular methamphetamine prevents the dopamine-induced enhancement of neuronal firing. J. Biol. Chem. 289, 22246-22257. https://doi.org/10.1074/jbc.M114.563056
  72. Sambo, D. O., Lin, M., Owens, A., Lebowitz, J. J., Richardson, B., Jagnarine, D. A., Shetty, M., Rodriquez, M., Alonge, T., Ali, M., Katz, J., Yan, L., Febo, M., Henry, L. K., Bruijnzeel, A. W., Daws, L. and Khoshbouei, H. (2017) The sigma-1 receptor modulates methamphetamine dysregulation of dopamine neurotransmission. Nat. Commun. 8, 2228. https://doi.org/10.1038/s41467-017-02087-x
  73. Sanchez, V., Zeini, M., Camarero, J., O'Shea, E., Bosca, L., Green, A. R. and Colado, M. I. (2003) The nNOS inhibitor, AR-R17477AR, prevents the loss of NF68 immunoreactivity induced by methamphetamine in the mouse striatum. J. Neurochem. 85, 515-524. https://doi.org/10.1046/j.1471-4159.2003.01714.x
  74. Schmitt, K. C. and Reith, M. E. (2010) Regulation of the dopamine transporter: aspects relevant to psychostimulant drugs of abuse. Ann. N. Y. Acad. Sci. 1187, 316-340. https://doi.org/10.1111/j.1749-6632.2009.05148.x
  75. Sekine, Y., Ouchi, Y., Sugihara, G., Takei, N., Yoshikawa, E., Nakamura, K., Iwata, Y., Tsuchiya, K. J., Suda, S., Suzuki, K., Kawai, M., Takebayashi, K., Yamamoto, S., Matsuzaki, H., Ueki, T., Mori, N., Gold, M. S. and Cadet, J. L. (2008) Methamphetamine causes microglial activation in the brains of human abusers. J. Neurosci. 28, 5756-5761. https://doi.org/10.1523/JNEUROSCI.1179-08.2008
  76. Shah, A. and Kumar, A. (2016) Methamphetamine-mediated endoplasmic reticulum (ER) stress induces type-1 programmed cell death in astrocytes via ATF6, IRE1alpha and PERK pathways. Oncotarget 7, 46100-46119. https://doi.org/10.18632/oncotarget.10025
  77. Shen, X., Zhang, K. and Kaufman, R. J. (2004) The unfolded protein response--a stress signaling pathway of the endoplasmic reticulum. J. Chem. Neuroanat. 28, 79-92. https://doi.org/10.1016/j.jchemneu.2004.02.006
  78. Shen, Y., Qin, H., Chen, J., Mou, L., He, Y., Yan, Y., Zhou, H., Lv, Y., Chen, Z., Wang, J. and Zhou, Y. D. (2016) Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J. Cell Biol. 215, 719-734. https://doi.org/10.1083/jcb.201605046
  79. Shiflett, M. W. and Balleine, B. W. (2011) Molecular substrates of action control in cortico-striatal circuits. Prog. Neurobiol. 95, 1-13. https://doi.org/10.1016/j.pneurobio.2011.05.007
  80. Shin, E. J., Duong, C. X., Nguyen, X. K., Li, Z., Bing, G., Bach, J. H., Park, D. H., Nakayama, K., Ali, S. F., Kanthasamy, A. G., Cadet, J. L., Nabeshima, T. and Kim, H. C. (2012) Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cdelta. Behav. Brain Res. 232, 98-113. https://doi.org/10.1016/j.bbr.2012.04.001
  81. Shin, E. J., Tran, H. Q., Nguyen, P. T., Jeong, J. H., Nah, S. Y., Jang, C. G., Nabeshima, T. and Kim, H. C. (2018) Role of mitochondria in methamphetamine-induced dopaminergic neurotoxicity: involvement in oxidative stress, neuroinflammation, and pro-apoptosis-a review. Neurochem. Res. 43, 66-78. https://doi.org/10.1007/s11064-017-2318-5
  82. Snider, S. E., Hendrick, E. S. and Beardsley, P. M. (2013) Glial cell modulators attenuate methamphetamine self-administration in the rat. Eur. J. Pharmacol. 701, 124-130. https://doi.org/10.1016/j.ejphar.2013.01.016
  83. Son, J. S., Jeong, Y. C. and Kwon, Y. B. (2015) Regulatory effect of bee venom on methamphetamine-induced cellular activities in prefrontal cortex and nucleus accumbens in mice. 38, 48-52. https://doi.org/10.1248/bpb.b14-00539
  84. Sonders, M. S., Zhu, S. J., Zahniser, N. R., Kavanaugh, M. P. and Amara, S. G. (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J. Neurosci. 17, 960-974. https://doi.org/10.1523/JNEUROSCI.17-03-00960.1997
  85. Staszewski, R. D. and Yamamoto, B. K. (2006) Methamphetamine-induced spectrin proteolysis in the rat striatum. J. Neurochem. 96, 1267-1276. https://doi.org/10.1111/j.1471-4159.2005.03618.x
  86. Stokes, A. H., Hastings, T. G. and Vrana, K. E. (1999) Cytotoxic and genotoxic potential of dopamine. J. Neurosci. Res. 55, 659-665. https://doi.org/10.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-C
  87. Sulzer, D., Maidment, N. T. and Rayport, S. (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J. Neurochem. 60, 527-535. https://doi.org/10.1111/j.1471-4159.1993.tb03181.x
  88. Sulzer, D., Pothos, E., Sung, H. M., Maidment, N. T., Hoebel, B. G. and Rayport, S. (1992) Weak base model of amphetamine action. Ann. N. Y. Acad. Sci. 654, 525-528. https://doi.org/10.1111/j.1749-6632.1992.tb26020.x
  89. Sun, W. L., Quizon, P. M. and Zhu, J. (2016) Molecular mechanism: ERK signaling, drug addiction, and behavioral effects. Prog. Mol. Biol. Transl. Sci. 137, 1-40.
  90. Suwanjang, W., Phansuwan-Pujito, P., Govitrapong, P. and Chetsawang, B. (2010) The protective effect of melatonin on methamphetamine-induced calpain-dependent death pathway in human neuroblastoma SH-SY5Y cultured cells. J. Pineal Res. 48, 94-101. https://doi.org/10.1111/j.1600-079X.2009.00731.x
  91. Tabas, I. and Ron, D. (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184-190. https://doi.org/10.1038/ncb0311-184
  92. Tocharus, J., Khonthun, C., Chongthammakun, S. and Govitrapong, P. (2010) Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J. Pineal Res. 48, 347-352. https://doi.org/10.1111/j.1600-079X.2010.00761.x
  93. Tseng, E. E., Brock, M. V., Lange, M. S., Troncoso, J. C., Blue, M. E., Lowenstein, C. J., Johnston, M. V. and Baumgartner, W. A. (2010) Glutamate excitotoxicity mediates neuronal apoptosis after hypothermic circulatory arrest. Ann. Thorac. Surg. 89, 440-445. https://doi.org/10.1016/j.athoracsur.2009.10.059
  94. Valjent, E., Pascoli, V., Svenningsson, P., Paul, S., Enslen, H., Corvol, J. C., Stipanovich, A., Caboche, J., Lombroso, P. J., Nairn, A. C., Greengard, P., Herve, D. and Girault, J. A. (2005) Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc. Natl. Acad. Sci. U.S.A. 102, 491-496. https://doi.org/10.1073/pnas.0408305102
  95. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., Sedler, M. J., Gatley, S. J., Hitzemann, R., Ding, Y. S., Logan, J., Wong, C. and Miller, E. N. (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am. J. Psychiatry 158, 377-382. https://doi.org/10.1176/appi.ajp.158.3.377
  96. Wan, F., Zang, S., Yu, G., Xiao, H., Wang, J. and Tang, J. (2017) Ginkgolide B suppresses methamphetamine-induced microglial activation through TLR4-NF-kappaB signaling pathway in BV2 cells. Neurochem. Res. 42, 2881-2891. https://doi.org/10.1007/s11064-017-2309-6
  97. Wang, G. J., Smith, L., Volkow, N. D., Telang, F., Logan, J., Tomasi, D., Wong, C. T., Hoffman, W., Jayne, M., Alia-Klein, N., Thanos, P. and Fowler, J. S. (2012) Decreased dopamine activity predicts relapse in methamphetamine abusers. Mol. Psychiatry 17, 918-925. https://doi.org/10.1038/mp.2011.86
  98. Wang, J., Yang, X. and Zhang, J. (2016) Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic beta cells. Cell Signal. 28, 1099-1104. https://doi.org/10.1016/j.cellsig.2016.05.007
  99. Warren, M. W., Kobeissy, F. H., Liu, M. C., Hayes, R. L., Gold, M. S. and Wang, K. K. (2005) Concurrent calpain and caspase-3 mediated proteolysis of alpha II-spectrin and tau in rat brain after methamphetamine exposure: a similar profile to traumatic brain injury. Life Sci. 78, 301-309. https://doi.org/10.1016/j.lfs.2005.04.058
  100. Xiong, K., Long, L., Zhang, X., Qu, H., Deng, H., Ding, Y., Cai, J., Wang, S., Wang, M., Liao, L., Huang, J., Yi, C. X. and Yan, J. (2017) Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro. Toxicol. In Vitro 44, 1-10. https://doi.org/10.1016/j.tiv.2017.06.009
  101. Xu, E., Liu, J., Liu, H., Wang, X. and Xiong, H. (2017) Role of microglia in methamphetamine-induced neurotoxicity. Int. J. Physiol. Pathophysiol. Pharmacol. 9, 84-100.
  102. Yang, X., Wang, Y., Li, Q., Zhong, Y., Chen, L., Du, Y., He, J., Liao, L., Xiong, K., Yi, C. X. and Yan, J. (2018) The main molecular mechanisms underlying methamphetamine- induced neurotoxicity and implications for pharmacological treatment. Front. Mol. Neurosci. 11, 186. https://doi.org/10.3389/fnmol.2018.00186
  103. Zanassi, P., Paolillo, M., Feliciello, A., Avvedimento, E. V., Gallo, V. and Schinelli, S. (2001) cAMP-dependent protein kinase induces cAMP-response element-binding protein phosphorylation via an intracellular calcium release/ERK-dependent pathway in striatal neurons. J. Biol. Chem. 276, 11487-11495. https://doi.org/10.1074/jbc.M007631200
  104. Zhu, J. P., Xu, W. and Angulo, J. A. (2006) Methamphetamine-induced cell death: selective vulnerability in neuronal subpopulations of the striatum in mice. Neuroscience 140, 607-622. https://doi.org/10.1016/j.neuroscience.2006.02.055

피인용 문헌

  1. Extracellular Vesicle-Encapsulated miR-183-5p from Rhynchophylline-Treated H9c2 Cells Protect against Methamphetamine-Induced Dependence in Mouse Brain by Targeting NRG1 vol.2021, 2020, https://doi.org/10.1155/2021/2136076
  2. Tetrahydropalmatine Regulates BDNF through TrkB/CAM Interaction to Alleviate the Neurotoxicity Induced by Methamphetamine vol.12, pp.18, 2020, https://doi.org/10.1021/acschemneuro.1c00373
  3. Levo-tetrahydropalmatine: A new potential medication for methamphetamine addiction and neurotoxicity vol.344, 2020, https://doi.org/10.1016/j.expneurol.2021.113809
  4. Possible repair mechanisms of renin-angiotensin system inhibitors, matrix metalloproteinase-9 inhibitors and protein hormones on methamphetamine-induced neurotoxicity vol.48, pp.11, 2020, https://doi.org/10.1007/s11033-021-06741-y
  5. Comparative Neuropharmacology and Pharmacokinetics of Methamphetamine and Its Thiophene Analog Methiopropamine in Rodents vol.22, pp.21, 2020, https://doi.org/10.3390/ijms222112002
  6. A comprehensive study to delineate the role of an extracellular vesicle‐associated microRNA‐29a in chronic methamphetamine use disorder vol.10, pp.14, 2021, https://doi.org/10.1002/jev2.12177