
International Journal of Internet, Broadcasting and Communication Vol.12 No.3 189-195 (2020)

http://dx.doi.org/10.7236/IJIBC.2020.12.3.189

Design Model for Extensible Architecture of Smart Contract Vulnerability

Detection Tool

Yun-seok Choi1, Wan Yeon Lee2

1, 2 Professor, Department of Computer Science, Dongduk Women’s University, Korea
1cooling@dongduk.ac.kr, 2wanlee@dongduk.ac.kr

Abstract

Smart contract, one of the applications of blockchain, is expected to be used in various industries. However,

there is risks of damages caused by attacks on vulnerabilities in smart contract codes. Tool support is essential

to detect vulnerabilities, and as new vulnerabilities emerge and smart contract implementation languages

increase, the tools must have extensibility for them. We propose a design model for extensible architecture of

smart contract vulnerability detection tools that detect vulnerabilities in smart contract source codes. The

proposed model is composed of design pattern-based structures that provides extensibility to easily support

extension of detecting modules for new vulnerabilities and other implementation languages of smart contract.

In the model, detecting modules are composed of independent module, so modifying or adding of module do

not affect other modules and the system structure.

Keywords: Blockchain, Smart contracts, Ethereum, Vulnerability, Software Architecture, Extensibility

1. Introduction

Blockchain, introduced for peer-to-peer payments of Bitcoin in 2009, is expand its application field to new

services such as smart contracts[1,2]. Ethereum is a platform that implements blockchain-based smart contracts

and can be used for developing a wide range of applications such as e-commerce, production and

manufacturing, banking, etc[3,4]. As applications of smart contract have expanded to various fields, the

vulnerability of smart contracts has emerged. In June 2016, Ether was stolen due to Reentrancy attack, one of

the vulnerabilities of smart contract code, resulting in a loss of about 60 million USD, and in November 2017,

an accident of freezing Ether worth about 300 million USD Occurred. It is considered that smart contracts

vulnerabilities and the attacks on them will increase more and more[5,6]. Therefore, various studies are being

conducted to identify vulnerabilities in smart contract and to develop vulnerability detection tools. For well-

known smart contract vulnerabilities, classification and related test cases and detailed information can be

viewed on online[7-9], various tools such as Oyente, Mythril, and Smartcheck are used for vulnerability

analysis[2,10,11]. The software architecture of the detection tool should be extensible in order to support new

vulnerabilities and the variety programming languages of smart contracts. We propose a design model of

IJIBC 20-3-24

Manuscript Received: July. 5, 2020 / Revised: July. 11, 2020 / Accepted: July. 18, 2020
Corresponding Author: cooling@dongduk.ac.kr
Tel: +82-2-940-4683, Fax: +82-2-940-4170
Professor, Department of Computer Science, Dongduk Women’s University, Korea

190 International Journal of Internet, Broadcasting and Communication Vol.12 No.3 189-195 (2020)

extensible architecture for smart contract vulnerability detection tools. The proposed model is composed of

each of vulnerability detection as an independent module and applying extensible design patterns. This paper

describes the model of the extensible architecture for vulnerability detection tool which targets are smart

contract source codes before publishing. Vulnerability detection techniques and algorithms are out of scope.

The rest of this paper organized as follows. In Section 2, we review the backgrounds of our work, design model

of extensible architecture is shown in Section 3. A case study and discussion about the design model are shown

in Section 4. Section 5 concludes the paper.

2. Backgrounds

2.1 Smart Contract and Vulnerability

Blockchain which is a basis technology of cryptocurrency, consists of a sequence of timestamped blocks

that can store transaction records like a general ledger in the real world[1,12]. Blockchain has advantages of

decentralization, security, anonymity, auditability of transactions and so on. So, various studies are being

conducted to utilize blockchain. In addition to cryptocurrency, the most representative example of using

blockchain is smart contracts, and platforms such as Ethereum, Cardano, and NEO are being used to implement

smart contracts[3]. Smart contracts that utilize the advantages of blockchain can guarantee the integrity of

transactions in a distributed environment and reduce the risk of manipulation because all data is shared with

users. Therefore, it is expected to be used for the development of distributed applications in various fields such

as finance, copyright, logistics, electronic voting, continuous history information management, and so on. With

the increasing applications of smart contract, security problems due to errors and vulnerabilities in smart

contract implementation codes are emerging[5,6,13]. As a result, various studies are being conducted to

analyze and supplement vulnerability of smart contract implementation code. There are more than 30

vulnerabilities in the SWC Registry, which summarizes the smart contract vulnerabilities[7], and as the

applications of smart contract increase in the future, the types of vulnerability may increase. Table 1 shows the

examples of smart contract vulnerability.

Table 1. Examples of smart contract vulnerability

Title SWC Code Description

Improper Adherence to Coding

Standards

SWC-100/108 Unauthorized or unintended state changes

can be made

Integer Overflow and Underflow SWC-101 An overflow/underflow can be occurred

Floating Pragma SWC-103 An outdated compiler version can be

affected the contract system negatively

Improper Access Control SWC-105/106 Malicious parties can self-destruct the

contract

Re-entrancy SWC-107 Different invocations of a target function to

interact in undesirable ways

These vulnerabilities similar to logical errors of general applications, so they should be able to be identified

and supplemented before smart contract publishing.

2.3 Extensibility Related to Architecture of Vulnerability Detection Tools

An architecture of vulnerability detection tool needs to be configured to have the following characteristics

Design Model for Extensible Architecture of Smart Contract Vulnerability Detection Tool 191

of extensibility. First, it should be easy to extend detecting functionality for new types of vulnerability. It is

necessary to be able to extend new functionality and to supplement the existing functionality without

modifying the structure of the tool. Similar types of functionality should be systematized and easily extended.

Second, the architecture of the tool should be support smart contract source codes implemented in a new

implementation language. In the case of Ethereum, which uses solidity normally, it is being extend kinds of

the smart contract implementation languages such as Python, Java, and Go. Therefore, it is necessary to be

able to extend functionality to recognize source codes of smart contracts written in a new implementation

language.

3. Design Model of Extensible Architecture

In this section, we will show a design model of extensible architecture for vulnerability detection tool. The

proposed model is targeted at an architecture of a tool which scans smart contract codes before publishing. The

model is composed of a structure which can extend detection functionality by an independent module.

3.1 Design Model Structure

The proposed model is designed to represent specific or multiple vulnerabilities. Each vulnerability is

composed of an independent module, and vulnerability detection is performed using a set of vulnerability

modules. The VulnerabilityType which represents a detection module is composed of the strategy pattern[14].

Each instance of the VulnerabilityType has a common interface for detection and can be selected dynamically

to use. The attribute matchingPattern which expressed by regular expressions can be used to detect

vulnerability. The VulnerabilityTypes can be categorized by types of vulnerability and programming

languages of smart contract source codes. The AbstractDetectorFactory creates concrete VulnerabilityTypes

for each type of vulnerability and smart contract implementation language. It is composed of the factory

method pattern[14], so a new type of VulnerabilityType can be added without modifying of the structure. Since

the strategy pattern and the factory method pattern are applied, the DetectorClient can perform detections with

the same usage regardless the type of VunerabilityType. Figure 1 shows the design model structure of

extensible architecture.

Figure 1. Design model structure

192 International Journal of Internet, Broadcasting and Communication Vol.12 No.3 189-195 (2020)

3.2 System Architecture

A system architecture used the proposed design model selects the detecting rules for each programming

language according to the source code of the smart contract, which is the target of vulnerability detection, and

dynamically selects the detection module according to the type of vulnerability to be detected. Figure 2 shows

an example of system architecture of the tool based on the design model.

Figure 2. System architecture

The Code Manager receives the smart contract source codes as input, identifies the implementation

language, and stores codes to a structure that can easily perform detection. The identification results of the

Code Manager are used to select detection modules in the Vulnerability Detector which is implemented based

on the proposed design model. The vulnerability detecting function is provided by the Vulnerability

Information Manager, and the pattern matching rule for vulnerability detection is obtained from the Detection

Rules. The Vulnerability Detector performs vulnerability detection for smart contract source codes structured

by the Code manager. The analysis results of each vulnerability are sent to the Code Recommender, and the

Code Recommender generates recommendations that can be used to complement detection results.

4. A Case study and Discussion

In order to verify the usefulness of the proposed model, a smart contract vulnerability detection tool based

on the model and system architecture was implemented with Java. Each of detecting module is the type of

VulnerabilityType in the design model, it can be modified or added without modifying the structure of the tool,

because it has the common type and interface. Vulnerability detecting techniques and algorithms are out of

scope this study, so we used well known detecting techniques and algorithms to implement each of the

VulnerabilityType modules. The tool based on the proposed model consists of independent module by the type

of vulnerability, so it can be able to extend the detecting module according to type of the vulnerability or the

implementation language without changes of the tool structure. Figure 3 shows parts of implementations of

the proposed model. In Figure 3, (a) shows the parent class of vulnerability detecting classes which is the type

of the VulnerabilityType and (b) shows a package structure of detection modules. If a new vulnerability

detecting module is needed, implement a class inheriting from the VulnerabilityType and add it to this package

structure. (c) shows a part of an implemented class for detecting a vulnerability. Since all detecting modules

implement the common interface detects(), the modules can have the same usage regardless of the type of

Design Model for Extensible Architecture of Smart Contract Vulnerability Detection Tool 193

vulnerability when detecting.

Figure 3. Implementation of the design model

(a) VulnerabilityType class, (b) Package structure, (c) An implemented class

The target of the implemented tool can be smart contract source codes implemented by solidity or python.

Multiple vulnerabilities can be checked when it selected on the candidate vulnerability list. If a vulnerability

of smart contract source code is detected, information about the vulnerability is displayed, and recommended

code information supplementing the vulnerability is provided.

Figure 4 shows the execution of the vulnerability detection tool and Figure 5 shows the recommended code.

As a result of checking the exploitable vulnerability against the visibility_not_set.sol source code, a test case

of the improper adherence in [7], In addition to the improper adherence, the intended vulnerability in the test cases,

the results of the floating pragma vulnerability were detected. In the recommend code, we were able to confirm the

recommendations to modify the floating pragma of the original source code and to supplement the improper adherence.

In Figure 5, the first line of code was changed to prevent the floating pragma and annotations were inserted to

inform the improper adherence.

Figure 4. Smart contract vulnerability detection tool

194 International Journal of Internet, Broadcasting and Communication Vol.12 No.3 189-195 (2020)

Figure 5. Recommended code

Through the implementation of the tool, we verified that the tool implemented based on the proposed model

can be added a new vulnerability detecting module without modifying the existing structure. As the design

model intended, detection modules can be added for which new type of vulnerability or smart contract source

codes using another implementation language.

5. Conclusion

Smart contracts are expanding applications to various fields based on the advantages of the blockchain, but

there is risks of attack due to the vulnerability of smart contract codes. As new vulnerabilities emerge and

smart contract implementation languages increase, vulnerability detection tools must have extensibility for

them. In this paper, we proposed a design model for extensible architecture of smart contract vulnerability

detection tool. The proposed model was composed of design pattern-based structures that provides

extensibility to easily support the extension of modules for new vulnerabilities and other implementation

languages. A detecting functionality was composed of independent module, so modifying or adding of module

do not affect other modules and the system structure. The tool implemented based on the proposed model

showed that it can be extended vulnerability modules without modifying the existing structure. Therefore,

applying the proposed model can be expected to facilitate the extension for detection functionality.

It is necessary to study models which can publishing smart contract codes and detecting deployment errors

on multiple environments. In addition, it is necessary to study the modeling for vulnerability detection based

on byte codes of smart contracts.

Acknowledgement

This research was supported by the Dongduk Women’s University Grant, 2019

References

[1] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org

Design Model for Extensible Architecture of Smart Contract Vulnerability Detection Tool 195

[2] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making Smart Contracts Smarter,” in Proc. 2016 ACM

SIGSAC Conference on Computer and Communications Security, pp. 254-269, Oct. 2016.

DOI: https://doi.org/10.1145/2976749.2978309

[3] Ethereum Foundation, Ethereum Whitepaper, https://ethereum.org/en/whitepaper/

[4] N.F. Samreen and M.H. Alalfi, “Reentrancy Vulnerability Identification in Ethereum Smart Contracts,” in Proc.

2020 IEEE International Workshop on Blockchain Oriented Software Engineering, pp. 22-29, Feb.18, 2020.

DOI: https://doi.org/10.1109/IWBOSE50093.2020.9050260

[5] A. Dika and M. Nowostawski, “Security Vulnerabilities in Ethereum Smart Contracts,” in Proc. 2018 IEEE

International Conference on Internet of Things and IEEE Green Computing and Communications and IEEE Cyber,

Physical and Social Computing and IEEE Smart Data, pp. 955-962, July 2018.

DOI: https://doi.org/10.1109/Cybermatics_2018.2018.00182

[6] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang, “Towards Automated Reentrancy Detection for Smart

Contracts Based on Sequential Models,” IEEE Access, Vol. 8, pp. 19685-19695, Jan. 2020.

DOI: https://doi.org/10.1109/ACCESS.2020.2969429

[7] SWC Registry(Smart Contract Weakness Classification and Test Cases), https://swcregistry.io/

[8] CVE(Common Vulnerabilities and Exposures), https://cve.mitre.org/

[9] CWE(Common Weakness Enumeration), https://cwe.mitre.org/

[10] B. Mueller, A Framework for Bug Hunting on the Ethereum Blockchain, https://github.com/ConsenSys/mythril

[11] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y. Alexandrov, “Smartcheck:

Static analysis of Ethereum smart contracts,” in Proc. IEEE/ACM 1st Int. Workshop Emerg. Trends Softw. Eng.

Blockchain (WETSEB), pp. 9-16, May/Jun. 2018.

DOI: https://doi.org/10.1145/3194113.3194115

[12] Z. Zheng, S. Xie, H.N. Dai, X. Chen, and H. Wang, “Blockchain challenges and opportunities,” International

Journal of Web and Grid Services(IJWGS), Vol. 14, No. 4, pp. 352-375, Oct. 2018.

DOI: https://doi.org/10.1504/IJWGS.2018.095647

[13] W.Y. Lee and Y.S. Choi, “Vulnerability and Cost Analysis of Heterogeneous Smart Contract Programs in

Blockchain Systems,” Current Trends in Computer Sciences & Applications, Vol. 2, Issue 1, pp. 142-145, Feb.

2020.

DOI: https://doi.org/10.32474/CTCSA.2020.02.000126

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design pattern, Addison Wesley, pp. 107-116, pp.315-324,

1995

