References
- Hwang, S. Y. (2016). A recent overview on financial and special time series models. Korean Journal of Applied Statistics, 29(1), 1-12. https://doi.org/10.5351/KJAS.2016.29.1.001
- Woosik Lee &Heuiju Chun(2016). A deep learning analysis of the Chinese Yuan's volatility in the onshore and offshore markets. Journal of the Korean Data And Information Science Society 27(2), 2016.4, 327-335(9 pages). https://doi.org/10.7465/jkdi.2016.27.2.327
- Hoonja Lee. (2016). Time series models based on relationship between won/dollar and won/yen exchange rate. Journal of the Korean Data And Information Science Society 27(6), 2016.12, 1547-1555(9 pages). https://doi.org/10.7465/jkdi.2016.27.6.1547
- Sun Woong Kim & Heung Sik Choi. (2017). Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression. Journal of Intelligence and Information Systems 23(2), 2017.6, 107-122(16 pages). https://doi.org/10.13088/jiis.2017.23.2.107
- Lee, G. J., & Hwang, S. Y. (2017). Multivariate volatility for high-frequency financial series. Korean Journal of Applied Statistics, 30(1), 169-180 https://doi.org/10.5351/KJAS.2017.30.1.169
- Oh Suk Yang & Jae-Hoon Han. (2019). Exploring the Optimal Foreign Exchange Prediction Model for Corporate Foreign Exchange Risk Management: Evidence from OECD 10 Member States. INTERNATIONAL BUSINESS REVIEW 23(3), 2019.9, 321-350(30 pages). https://doi.org/10.21739/IBR.2019.09.23.3.321
- Jong-Duk Suh. (2016). Foreign Exchange Rate Forecasting Using the GARCH extended Random Forest Model. Journal of Industrial Economics and Business 29(5), 2016.10, 1607-1628(22 pages).
- Chang-Kuen Moon. (2010). Exchange Rate Volatility Measures and GARCH Model Applications : Practical Information Processing Approach. International Commerce and Information Review 12(1), 2010.03, 99-121(23 pages). https://doi.org/10.15798/KAICI.12.1.201003.99
- Pedram, M., & Ebrahimi, M. (2014). Exchange rate model approximation, forecast and sensitivity analysis by neural networks, case of iran. Business and Economic Research, 4(2), 49. https://doi.org/10.5296/ber.v4i2.5892
- Ranjit, Swagat, et al. "Comparison of algorithms in Foreign Exchange Rate Prediction." 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS). IEEE, 2018.
- Kadilar, Cem, Muammer Simsek, and Cagdas Hakan Aladag. "Forecasting the exchange rate series with ANN: the case of Turkey." Istanbul University Econometrics and Statistics e-Journal 9.1 (2009): 17-29.
- Hochreiter, Sepp, and Jurgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).
- Woosik Lee. (2017). A deep learning analysis of the KOSPI's directions. Journal of the Korean Data And Information Science Society 28(2), 2017.3, 287-295(9 pages). https://doi.org/10.7465/jkdi.2017.28.2.287
- Hinton, Geoffrey, et al. "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups." IEEE Signal processing magazine 29.6 (2012): 82-97. https://doi.org/10.1109/MSP.2012.2205597