References
- Cerminati S, Paoletti L, Aguirre A, Peiru S, Menzella HG, Castelli ME. 2019. Industrial uses of phospholipases: current state and future applications. Appl. Microbiol. Biotechnol. 103: 2571-2582. https://doi.org/10.1007/s00253-019-09658-6
- De Maria L, Vind J, Oxenboll KM, Svendsen A, Patkar S. 2007. Phospholipases and their industrial applications. Appl. Microbiol. Biotechnol. 74: 290-300. https://doi.org/10.1007/s00253-006-0775-x
- Dijkstra AJ. 2010. Enzymatic degumming. Eur. J. Lipid Sci. Technol. 112: 1178-1189. https://doi.org/10.1002/ejlt.201000320
-
Noel JP, Tsai MD. 1989. Phospholipase
$A_2$ engineering: design, synthesis, and expression of a gene for bovine (pro)phospholipase$A_2$ . J. Cell Biochem. 40: 309-320. https://doi.org/10.1002/jcb.240400307 -
van den Bergh CJ, Bekkers AC, De Geus P, Verheij HM, de Haas GH. 1987. Secretion of biologically active porcine prophospholipase
$A_2$ by Saccharomyces cerevisia: use of the prepro sequence of the alpha-mating factor. Eur. J. Biochem. 170: 241-246. https://doi.org/10.1111/j.1432-1033.1987.tb13691.x -
Lefkowitz LJ, Deems RA, Dennis EA. 1999. Expression of group IA phospholipase
$A_2$ in Pichia pastoris: identification of a phosphatidylcholine activator site using site-directed mutagenesis. Biochemistry 38: 14174-14184. https://doi.org/10.1021/bi991432t -
Liu YH, Huang L, Li MJ, Liu H, Guo W, Gui S, et al. 2016. Characterization of the recombinant porcine pancreas phospholipase
$A_2$ expressed in Pichia pastoris GS115 and its application to synthesis of 2-DHA-PS. Process Biochem. 51: 1472-1478. https://doi.org/10.1016/j.procbio.2016.06.023 -
Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG, Archer DB. 1992. Heterologous gene expression in Aspergillus niger: a glucoamylase-porcine pancreatic prophospholipase
$A_2$ fusion protein is secreted and processed to yield mature enzyme. Gene 122: 155-161. https://doi.org/10.1016/0378-1119(92)90043-O - Markert Y, Mansfeld J, Schierhorn A, Rucknagel KP, Ulbrich-Hofmann R. 2007. Production of synthetically phospholipase A2 variants created with industrial impact. Biotechnol. Bioeng. 98: 48-59. https://doi.org/10.1002/bit.21392
- Lathrop BK, Burack WR, Biltonen RL, Rule GS. 1992. Expression of a group II phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus in Escherichia coli: recovery and renaturation from bacterial inclusion bodies. Protein Expr. Purif. 3: 512-517. https://doi.org/10.1016/1046-5928(92)90069-9
-
Giuliani CD, Iemma MR, Bondioli AC, Souza DH, Ferreira LL, Amaral AC, et al. 2001. Expression of an active recombinant lysine 49 phospholipase
$A_2$ myotoxin as a fusion protein in bacteria. Toxicon 39: 1595-1600. https://doi.org/10.1016/S0041-0101(01)00142-8 -
Yang WL, Peng LS, Zhong XF, Wei JW, Jiang XY, Ye LT, et al. 2003. Functional expression and characterization of a recombinant phospholipase
$A_2$ from sea snake Lapemis hardwickii as a soluble protein in E. coli. Toxicon 41: 713-721. https://doi.org/10.1016/S0041-0101(03)00047-3 -
Jin Q, Yang LX, Jiao HM, Lu B, Wu YQ, Zhou YC. 2004. Purification, gene cloning and expression of an acidic phospholipase
$A_2$ from Agkistrodon shedaoensis Zhao. Acta Biochim. Biophys. Sin. 36: 27-32. https://doi.org/10.1093/abbs/36.1.27 - Esposito D, Chatterjee DK. 2006. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol. 17: 353-358. https://doi.org/10.1016/j.copbio.2006.06.003
-
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. 2011. Phospholipase
$A_2$ enzymes: physical structure, biological function, sisease implication, chemical inhibition, and therapeutic intervention. Chem. Rev. 111: 6130-6185. https://doi.org/10.1021/cr200085w -
Sugiyama M, Ohtani K, Izuhara M, Koike T, Suzuki K, Imamura S, et al. 2002. A novel prokaryotic phospholipase
$A_2$ : characterization, gene cloning, and solution structure. J. Biol. Chem. 277: 20051-20058. https://doi.org/10.1074/jbc.M200264200 -
Liu AX, Yu XW, Sha C, Xu Y. 2015. Streptomyces violaceoruber phospholipase
$A_2$ : expression in Pichia pastoris, properties, and application in oil degumming. Appl. Biochem. Biotechnol. 175: 3195-3206. https://doi.org/10.1007/s12010-015-1492-7 -
Takemori D, Yoshino K, Eba C, Nakano H, Iwasaki Y. 2012. Extracellular production of phospholipase
$A_2$ from Streptomyces violaceoruber by recombinant Escherichia coli. Protein Expres. Purif. 81: 145-150. https://doi.org/10.1016/j.pep.2011.10.002 - Jung H-J, Kim S-K, Min W-K, Lee S-S, Park K, Park Y-C, et al. 2011. Polycationic amino acid tags enhance soluble expression of Candida antarctica lipase B in recombinant Escherichia coli. Bioprocess Biosyst. Eng. 34: 833-839. https://doi.org/10.1007/s00449-011-0533-z
- Jeon E-Y, Seo J-H, Kang W-R, Kim M-J, Lee J-H, Oh D-K, et al. 2016. Simultaneous enzyme/whole-cell biotransformation of plant oils into C9 carboxylic acids. ACS Catal. 6: 7547-7553. https://doi.org/10.1021/acscatal.6b01884
- Seo E-J, Yeon YJ, Seo J-H, Lee J-H, Bongol JP, Oh Y, et al. 2018. Enzyme/whole-cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n-nonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid. Bioresour. Technol. 251: 288-294. https://doi.org/10.1016/j.biortech.2017.12.036
- Seo E-J, Kim H-J, Kim M-J, Kim J-S, Park J-B. 2019. Cofactor specificity engineering of a long-chain secondary alcohol dehydrogenase from Micrococcus luteus for redox-neutral biotransformation of fatty acids. Chem. Comm. 55: 14462-14465. https://doi.org/10.1039/C9CC06447H
- Tschopp JF, Brust PF, Cregg JM, Stillman CA, Gingeras TR. 1987. Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res. 15: 3859-3876. https://doi.org/10.1093/nar/15.9.3859
- Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, et al. 1984. Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81: 4642-4646. https://doi.org/10.1073/pnas.81.15.4642
-
Matoba Y, Sugiyama M. 2003. Atomic resolution structure of prokaryotic phospholipase
$A_2$ : analysis of internal motion and implication for a catalytic mechanism. Proteins 51: 453-469. https://doi.org/10.1002/prot.10360 - Blank K, Morfill J, Gumpp H, Gaub HE. 2006. Functional expression of Candida antarctica lipase B in Eschericha coli. J. Biotechnol. 125: 474-483. https://doi.org/10.1016/j.jbiotec.2006.04.004
- Jung SM, Seo JH, Lee JH, Park JB, Seo JH. 2015. Fatty acid hydration activity of a recombinant Escherichia coli-based biocatalyst is improved through targeting the oleate hydratase into the periplasm. Biotechnol. J. 10: 1887-1893. https://doi.org/10.1002/biot.201500141
- Jeon EY, Song JW, Cha HJ, Lee SM, Lee J, Park JB. 2018. Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane. J. Biotechnol. 281: 161-167. https://doi.org/10.1016/j.jbiotec.2018.07.019
- Liu D, Schmid RD, Rusnak M. 2006. Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm: a screening system for a frequently used biocatalyst. Appl. Microbiol. Biotechnol. 72: 1024-1032. https://doi.org/10.1007/s00253-006-0369-7
- Jung SY, Park SS. 2008. Improving the expression yield of Candida antarctica lipase B in Escherichia coli by mutagenesis. Biotechnol. Lett. 30: 717-722. https://doi.org/10.1007/s10529-007-9591-3
- Kim SK, Park YC, Lee HH, Jeon ST, Min WK, Seo JH. 2015. Simple amino acid tags improve both expression and secretion of Candida antarctica lipase B in recombinant Escherichia coli. Biotechnol. Bioeng. 112: 346-355. https://doi.org/10.1002/bit.25361
- Kim SK, Min WK, Park YC, Seo JH. 2015. Application of repeated aspartate tags to improving extracellular production of Escherichia coli L-asparaginase isozyme II. Enzyme Microb. Technol. 79-80: 49-54. https://doi.org/10.1016/j.enzmictec.2015.06.017
- Chin YW, Kim JY, Lee WH, Seo JH. 2015. Enhanced production of 2 '-fucosyllactose in engineered Escherichia coli BL21star(DE3) by modulation of lactose metabolism and fucosyltransferase. J. Biotechnol. 210: 107-115. https://doi.org/10.1016/j.jbiotec.2015.06.431