References
-
Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R. 2015. Photosynthetic bioenergy utilizing
$CO_2$ : An approach on flue gases utilization for third generation biofuels. J. Clean. Prod. 98: 53-65. https://doi.org/10.1016/j.jclepro.2014.03.034 - Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Subramanian S, Barry AN, Pieris S, Sayre RT. 2013. Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: Implications for biomass and biofuel production. Biotechnol. Biofuels. 6: 150. https://doi.org/10.1186/1754-6834-6-150
- Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy. Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
- Griffiths MJ, Harrison STL. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507. https://doi.org/10.1007/s10811-008-9392-7
- Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 54: 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
- Wahlen BD, Morgan MR, McCurdy AT, Willis RM, Morgan MD, Dye DJ, et al. 2013. Biodiesel from microalgae, yeast, and bacteria: Engine performance and exhaust emissions. Energy Fuels 27: 220-228. https://doi.org/10.1021/ef3012382
- Rashid N, Selvaratnam T, Park WK. 2020. Resource recovery from waste streams using microalgae: Opportunities and Threats. pp. 337-351. In Yousuf A, Microalgae Cultivation for Biofuels Production. Academic Press. London
- Giostri A, Binotti M, Macchi E. 2016. Microalgae cofiring in coal power plants: Innovative system layout and energy analysis. Renew. Energy 95: 449-464. https://doi.org/10.1016/j.renene.2016.04.033
- Choi HI, Lee JS, Choi JW, Shin YS, Sung YJ, Hong ME, et al. 2019. Performance and potential appraisal of various microalgae as direct combustion fuel. Bioresour. Technol. 273: 341-349. https://doi.org/10.1016/j.biortech.2018.11.030
- John RP, Anisha GS, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102: 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
- Seon G, Joo HW, Kim YJ, Park J, Chang YK. 2019. Hydrolysis of lipid-extracted Chlorella vulgaris by simultaneous use of solid and liquid acids. Biotechnol. Prog. 35: e2729. https://doi.org/10.1002/btpr.2729
- Ward AJ, Lewis DM, Green FB. 2014. Anaerobic digestion of algae biomass: A review. Algal Res. 5: 204-214. https://doi.org/10.1016/j.algal.2014.02.001
- Widjaja A, Chien CC, Ju YH. 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 40: 13-20. https://doi.org/10.1016/j.jtice.2008.07.007
- Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112. https://doi.org/10.1002/bit.22033
- Li X, Wang M, Liao X, Chen H, Dai Y, Chen B. 2015. Two stages of N-deficient cultivation enhance the lipid content of microalga Scenedesmus sp. J. Am. Oil Chem. Soc. 92: 503-512. https://doi.org/10.1007/s11746-015-2613-8
- Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, et al. 2014. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour. Technol. 155: 204-212. https://doi.org/10.1016/j.biortech.2013.12.109
- Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG. 1996. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol. 110: 689-696. https://doi.org/10.1104/pp.110.2.689
- Geider RJ, La Roche J. 2002. Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37: 1-17. https://doi.org/10.1017/S0967026201003456
- Jin HF, Lim BR, Lee K. 2006. Influence of nitrate feeding on carbon dioxide fixation by microalgae. J. Environ. Sci. Heal. - Part A Tox. Hazard. Subst. Environ. Eng. 41: 2813-2824. https://doi.org/10.1080/10934520600967928
- Benavente-Valdes JR, Aguilar C, Contreras-Esquivel JC, Mendez-Zavala A, Montanez J. 2016. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol. Rep. 10: 117-125. https://doi.org/10.1016/j.btre.2016.04.001
- Yap BHJ, Crawford SA, Dagastine RR, Scales PJ, Martin GJO. 2016. Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption. J. Ind. Microbiol. Biotechnol. 43: 1671-1680. https://doi.org/10.1007/s10295-016-1848-1
- Yeh KL, Chang JS. 2012. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour. Technol. 105: 120-127. https://doi.org/10.1016/j.biortech.2011.11.103
-
Zheng Y, Yuan C, Liu J, Hu G, Li F. 2014. Lipid production by a
$CO_2$ -tolerant green microalga, Chlorella sp. MRA-1. J. Microbiol. Biotechnol. 24: 683-689. https://doi.org/10.4014/jmb.1308.08050 - Yao L, Gerde JA, Lee SL, Wang T, Harrata KA. 2015. Microalgae lipid characterization. J. Agric. Food Chem. 63: 1773-1787. https://doi.org/10.1021/jf5050603
- Chen Z, Wang L, Qiu S, Ge S. 2018. Determination of microalgal lipid content and fatty acid for biofuel production. Biomed. Res. Int. 2018: 1503126.
- Yang C, Li R, Cui C, Liu S, Qiu Q, Ding Y, et al. 2016. Catalytic hydroprocessing of microalgae-derived biofuels: A review. Green Chem. 18: 3684-3699. https://doi.org/10.1039/C6GC01239F
- Boudiere L, Michaud M, Petroutsos D, Rebeille F, Falconet D, Bastien O, et al. 2014. Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochim. Biophys. Acta - Bioenerg. 1837: 470-480. https://doi.org/10.1016/j.bbabio.2013.09.007
- Wang G, Wang T. 2012. Characterization of lipid components in two microalgae for biofuel application. J. Am. Oil Chem. Soc. 89: 135-143. https://doi.org/10.1007/s11746-011-1879-8
- Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, et al. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 11: 7. https://doi.org/10.1186/1472-6750-11-7
- Martin GJO, Hill DRA, Olmstead ILD, Bergamin A, Shears MJ, Dias DA, et al. 2014. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS One. 9: e103389. https://doi.org/10.1371/journal.pone.0103389
- Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 101: 6797-6804. https://doi.org/10.1016/j.biortech.2010.03.120
- Markou G, Angelidaki I, Georgakakis D. 2012. Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl. Microbiol. Biotechnol. 96: 631-645. https://doi.org/10.1007/s00253-012-4398-0
- Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z. 2014. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour. Technol. 152: 292-298. https://doi.org/10.1016/j.biortech.2013.10.092
-
Moraes L, Santos LO, Costa JAV. 2020. Bioprocess strategies for enhancing biomolecules productivity in Chlorella fusca LEB 111 using a
$CO_2$ carbon source. Biotechnol. Prog. 36: e2909. - Peccia J, Haznedaroglu B, Gutierrez J, Zimmerman JB. 2013. Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol. 31: 134-138. https://doi.org/10.1016/j.tibtech.2013.01.010
- Baffes J, Kose MA, Ohnsorge F, Stocker M. 2015. The great plunge in oil prices: Causes, consequences, and policy responses. Consequences, and Policy Responses (June 2015).
- Heal G, Hallmeyer K. 2015. How Lower oil Pices Impact the Competitiveness of Oil with Renewable Fuels. Center on Global Energy Policy, pp. 1-18. Columbia, SIPA: New York, NY, USA.
-
Garcia-Cubero R, Moreno-Fernandez J, Garcia-Gonzalez M. 2017. Modelling growth and
$CO_2$ fixation by Scenedesmus vacuolatus in continuous culture. Algal Res. 24: 333-339. https://doi.org/10.1016/j.algal.2017.04.018 -
Ho SH, Chen WM, Chang JS. 2010. Scenedesmus obliquus CNW-N as a potential candidate for
$CO_2$ mitigation and biodiesel production. Bioresour. Technol. 101: 8725-8730. https://doi.org/10.1016/j.biortech.2010.06.112 - Rizwan M, Mujtaba G, Lee K. 2017. Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. Biotechnol. Bioprocess Eng. 22: 68-75. https://doi.org/10.1007/s12257-016-0628-0
- Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR. 2010. Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol. 101: 5892-5896. https://doi.org/10.1016/j.biortech.2010.02.088
-
Tang D, Han W, Li P, Miao X, Zhong J. 2011.
$CO_2$ biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different$CO_2$ levels. Bioresour. Technol. 102: 3071-3076. https://doi.org/10.1016/j.biortech.2010.10.047