DOI QR코드

DOI QR Code

Effects of Nitrogen Supplementation Status on CO2 Biofixation and Biofuel Production of the Promising Microalga Chlorella sp. ABC-001

  • Cho, Jun Muk (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Oh, You-Kwan (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Park, Won-Kun (Department of Chemistry and Energy Engineering, Sangmyung University) ;
  • Chang, Yong Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2020.05.25
  • Accepted : 2020.06.09
  • Published : 2020.08.28

Abstract

The use of microalgal biomass as feedstock for biofuels has been discussed for decades as it provides a sustainable approach to producing fuels for the future. Nonetheless, its feasibility has not been established yet and various aspects of biomass applications such as CO2 biofixation should also be explored. Therefore, in this study, the CO2 biofixation and lipid/carbohydrate production potential of Chlorella sp. ABC-001 were examined under various nitrogen concentrations. The highest biomass productivity and CO2 biofixation rate of 0.422 g/l/d and 0.683 g/l/d, respectively, were achieved under a nitrogen-rich condition (15 mM nitrate). Carbohydrate content was generally proportional to initial nitrate concentration and showed the highest value of 41.5% with 15 mM. However, lipid content showed an inverse relationship with nitrogen supplementation and showed the highest value of 47.4% with 2.5 mM. In consideration as feedstock for biofuels (bioethanol, biodiesel, and biogas), the sum of carbohydrate and lipid contents were examined and the highest value of 79.6% was achieved under low nitrogen condition (2.5 mM). For lipid-based biofuel production, low nitrogen supplementation should be pursued. However, considering the lower feasibility of biodiesel, pursuing CO2 biofixation and the production of carbohydrate-based fuels under nitrogen-rich condition might be more rational. Thus, nitrogen status as a cultivation strategy must be optimized according to the objective, and this was confirmed with the promising alga Chlorella sp. ABC-001.

Keywords

References

  1. Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldivar R. 2015. Photosynthetic bioenergy utilizing $CO_2$: An approach on flue gases utilization for third generation biofuels. J. Clean. Prod. 98: 53-65. https://doi.org/10.1016/j.jclepro.2014.03.034
  2. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  3. Subramanian S, Barry AN, Pieris S, Sayre RT. 2013. Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: Implications for biomass and biofuel production. Biotechnol. Biofuels. 6: 150. https://doi.org/10.1186/1754-6834-6-150
  4. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy. Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  5. Griffiths MJ, Harrison STL. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507. https://doi.org/10.1007/s10811-008-9392-7
  6. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 54: 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x
  7. Wahlen BD, Morgan MR, McCurdy AT, Willis RM, Morgan MD, Dye DJ, et al. 2013. Biodiesel from microalgae, yeast, and bacteria: Engine performance and exhaust emissions. Energy Fuels 27: 220-228. https://doi.org/10.1021/ef3012382
  8. Rashid N, Selvaratnam T, Park WK. 2020. Resource recovery from waste streams using microalgae: Opportunities and Threats. pp. 337-351. In Yousuf A, Microalgae Cultivation for Biofuels Production. Academic Press. London
  9. Giostri A, Binotti M, Macchi E. 2016. Microalgae cofiring in coal power plants: Innovative system layout and energy analysis. Renew. Energy 95: 449-464. https://doi.org/10.1016/j.renene.2016.04.033
  10. Choi HI, Lee JS, Choi JW, Shin YS, Sung YJ, Hong ME, et al. 2019. Performance and potential appraisal of various microalgae as direct combustion fuel. Bioresour. Technol. 273: 341-349. https://doi.org/10.1016/j.biortech.2018.11.030
  11. John RP, Anisha GS, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol. 102: 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  12. Seon G, Joo HW, Kim YJ, Park J, Chang YK. 2019. Hydrolysis of lipid-extracted Chlorella vulgaris by simultaneous use of solid and liquid acids. Biotechnol. Prog. 35: e2729. https://doi.org/10.1002/btpr.2729
  13. Ward AJ, Lewis DM, Green FB. 2014. Anaerobic digestion of algae biomass: A review. Algal Res. 5: 204-214. https://doi.org/10.1016/j.algal.2014.02.001
  14. Widjaja A, Chien CC, Ju YH. 2009. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 40: 13-20. https://doi.org/10.1016/j.jtice.2008.07.007
  15. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112. https://doi.org/10.1002/bit.22033
  16. Li X, Wang M, Liao X, Chen H, Dai Y, Chen B. 2015. Two stages of N-deficient cultivation enhance the lipid content of microalga Scenedesmus sp. J. Am. Oil Chem. Soc. 92: 503-512. https://doi.org/10.1007/s11746-015-2613-8
  17. Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, et al. 2014. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour. Technol. 155: 204-212. https://doi.org/10.1016/j.biortech.2013.12.109
  18. Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG. 1996. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. Plant Physiol. 110: 689-696. https://doi.org/10.1104/pp.110.2.689
  19. Geider RJ, La Roche J. 2002. Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37: 1-17. https://doi.org/10.1017/S0967026201003456
  20. Jin HF, Lim BR, Lee K. 2006. Influence of nitrate feeding on carbon dioxide fixation by microalgae. J. Environ. Sci. Heal. - Part A Tox. Hazard. Subst. Environ. Eng. 41: 2813-2824. https://doi.org/10.1080/10934520600967928
  21. Benavente-Valdes JR, Aguilar C, Contreras-Esquivel JC, Mendez-Zavala A, Montanez J. 2016. Strategies to enhance the production of photosynthetic pigments and lipids in chlorophycae species. Biotechnol. Rep. 10: 117-125. https://doi.org/10.1016/j.btre.2016.04.001
  22. Yap BHJ, Crawford SA, Dagastine RR, Scales PJ, Martin GJO. 2016. Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption. J. Ind. Microbiol. Biotechnol. 43: 1671-1680. https://doi.org/10.1007/s10295-016-1848-1
  23. Yeh KL, Chang JS. 2012. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour. Technol. 105: 120-127. https://doi.org/10.1016/j.biortech.2011.11.103
  24. Zheng Y, Yuan C, Liu J, Hu G, Li F. 2014. Lipid production by a $CO_2$-tolerant green microalga, Chlorella sp. MRA-1. J. Microbiol. Biotechnol. 24: 683-689. https://doi.org/10.4014/jmb.1308.08050
  25. Yao L, Gerde JA, Lee SL, Wang T, Harrata KA. 2015. Microalgae lipid characterization. J. Agric. Food Chem. 63: 1773-1787. https://doi.org/10.1021/jf5050603
  26. Chen Z, Wang L, Qiu S, Ge S. 2018. Determination of microalgal lipid content and fatty acid for biofuel production. Biomed. Res. Int. 2018: 1503126.
  27. Yang C, Li R, Cui C, Liu S, Qiu Q, Ding Y, et al. 2016. Catalytic hydroprocessing of microalgae-derived biofuels: A review. Green Chem. 18: 3684-3699. https://doi.org/10.1039/C6GC01239F
  28. Boudiere L, Michaud M, Petroutsos D, Rebeille F, Falconet D, Bastien O, et al. 2014. Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochim. Biophys. Acta - Bioenerg. 1837: 470-480. https://doi.org/10.1016/j.bbabio.2013.09.007
  29. Wang G, Wang T. 2012. Characterization of lipid components in two microalgae for biofuel application. J. Am. Oil Chem. Soc. 89: 135-143. https://doi.org/10.1007/s11746-011-1879-8
  30. Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, et al. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 11: 7. https://doi.org/10.1186/1472-6750-11-7
  31. Martin GJO, Hill DRA, Olmstead ILD, Bergamin A, Shears MJ, Dias DA, et al. 2014. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp. (Trebouxiophyceae) and Nannochloropsis sp. (Eustigmatophyceae). PLoS One. 9: e103389. https://doi.org/10.1371/journal.pone.0103389
  32. Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL. 2010. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 101: 6797-6804. https://doi.org/10.1016/j.biortech.2010.03.120
  33. Markou G, Angelidaki I, Georgakakis D. 2012. Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl. Microbiol. Biotechnol. 96: 631-645. https://doi.org/10.1007/s00253-012-4398-0
  34. Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z. 2014. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour. Technol. 152: 292-298. https://doi.org/10.1016/j.biortech.2013.10.092
  35. Moraes L, Santos LO, Costa JAV. 2020. Bioprocess strategies for enhancing biomolecules productivity in Chlorella fusca LEB 111 using a $CO_2$ carbon source. Biotechnol. Prog. 36: e2909.
  36. Peccia J, Haznedaroglu B, Gutierrez J, Zimmerman JB. 2013. Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol. 31: 134-138. https://doi.org/10.1016/j.tibtech.2013.01.010
  37. Baffes J, Kose MA, Ohnsorge F, Stocker M. 2015. The great plunge in oil prices: Causes, consequences, and policy responses. Consequences, and Policy Responses (June 2015).
  38. Heal G, Hallmeyer K. 2015. How Lower oil Pices Impact the Competitiveness of Oil with Renewable Fuels. Center on Global Energy Policy, pp. 1-18. Columbia, SIPA: New York, NY, USA.
  39. Garcia-Cubero R, Moreno-Fernandez J, Garcia-Gonzalez M. 2017. Modelling growth and $CO_2$ fixation by Scenedesmus vacuolatus in continuous culture. Algal Res. 24: 333-339. https://doi.org/10.1016/j.algal.2017.04.018
  40. Ho SH, Chen WM, Chang JS. 2010. Scenedesmus obliquus CNW-N as a potential candidate for $CO_2$ mitigation and biodiesel production. Bioresour. Technol. 101: 8725-8730. https://doi.org/10.1016/j.biortech.2010.06.112
  41. Rizwan M, Mujtaba G, Lee K. 2017. Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta. Biotechnol. Bioprocess Eng. 22: 68-75. https://doi.org/10.1007/s12257-016-0628-0
  42. Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR. 2010. Potential carbon dioxide fixation by industrially important microalgae. Bioresour. Technol. 101: 5892-5896. https://doi.org/10.1016/j.biortech.2010.02.088
  43. Tang D, Han W, Li P, Miao X, Zhong J. 2011. $CO_2$ biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different $CO_2$ levels. Bioresour. Technol. 102: 3071-3076. https://doi.org/10.1016/j.biortech.2010.10.047