References
- Vonuexkull HR, Mutert E. 1995. Global extent, development and economic-impact of acid soils. Plant Soil 171: 1-15. https://doi.org/10.1007/BF00009558
- Ryan PR, Shaff JE, Kochian LV. 1992. Aluminum toxicity in roots - Correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars. Plant Physiol. 99: 1193-1200. https://doi.org/10.1104/pp.99.3.1193
- Koyama H, Toda T, Yokota S, Dawair Z, Hara T. 1995. Effects of aluminum and Ph on root-growth and cell viability in Arabidopsis-Thaliana strain landsberg in hydroponic culture. Plant Cell Physiol. 36: 201-205.
- Kochian LV. 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annu. Rev. Plant Phys. 46: 237-260. https://doi.org/10.1146/annurev.pp.46.060195.001321
- Ryan PR, Delhaize E, Jones DL. 2001. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Phys. 52: 527-560. https://doi.org/10.1146/annurev.arplant.52.1.527
- Wei LL, Chen CR, Xu ZH. 2010. Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils. Biol. Fertil. Soils 46: 765-769. https://doi.org/10.1007/s00374-010-0464-x
- Ma JF, Ryan PR, Delhaize E. 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6: 273-278. https://doi.org/10.1016/S1360-1385(01)01961-6
- Cheng FX, Cao GQ, Wang XR, Zhao J, Yan XL, Liao H. 2009. Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China. Chinese Sci. Bull. 54: 412-420.
- Dong DF, Peng XX, Yan XL. 2004. Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiol. Plant. 122: 190-199. https://doi.org/10.1111/j.1399-3054.2004.00373.x
- Yang TY, Liu GL, Li YC, Zhu SM, Zou AL, Qi JL, et al. 2012. Rhizosphere microbial communities and organic acids secreted by aluminum-tolerant and aluminum-sensitive soybean in acid soil. Biol. Fertil. Soils 48: 97-108. https://doi.org/10.1007/s00374-011-0608-7
- Jaeger CH, Lindow SE, Miller S, Clark E, Firestone MK. 1999. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and Tryptophan. Appl. Environ. Microbiol. 65: 2685-2690. https://doi.org/10.1128/AEM.65.6.2685-2690.1999
- Berg G, Eberl L, Hartmann A. 2005. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ. Microbiol. 7: 1673-1685. https://doi.org/10.1111/j.1462-2920.2005.00891.x
- Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64: 807-838. https://doi.org/10.1146/annurev-arplant-050312-120106
- Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 2006. The role of root exudates in rhizosphere interations with plants and other organisms. Annu. Rev. Plant Biol. 57: 233-266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
- Paterson E, Gebbing T, Abel C, Sim A, Telfer G. 2007. Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol. 173: 600-610. https://doi.org/10.1111/j.1469-8137.2006.01931.x
- Aira M, Gomez-Brandon M, Lazcano C, Baath E, Dominguez J. 2010. Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol. Biochem. 42: 2276-2281. https://doi.org/10.1016/j.soilbio.2010.08.029
- Kondorosi E, Mergaert P, Kereszt A. 2013. A Paradigm for endosymbiotic life: Cell differentiation of rhizobium bacteria provoked by host plant factors. Annu. Rev. Microbiol. 67: 611-628. https://doi.org/10.1146/annurev-micro-092412-155630
- Ofek M, Voronov-Goldman M, Hadar Y, Minz D. 2014. Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environ. Microbiol. 16: 2157-2167. https://doi.org/10.1111/1462-2920.12228
- Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
- Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17: 478-486. https://doi.org/10.1016/j.tplants.2012.04.001
- Berg G, Grube M, Schloter M, Smalla K. 2014. Unraveling the plant nnicrobiome: looking back and future perspectives. Front. Microbiol. 5: 148. https://doi.org/10.3389/fmicb.2014.00148
- Li YC, Yang TY, Zhang PP, Zou AL, Peng X, Wang LL, et al. 2012. Differential responses of the diazotrophic community to aluminum-tolerant and aluminum-sensitive soybean genotypes in acidic soil. Eur. J. Soil Biol. 53: 76-85. https://doi.org/10.1016/j.ejsobi.2012.09.004
- Yang T, Ding Y, Zhu Y, Li Y, Wang X, Yang R, et al. 2012. Rhizosphere bacteria induced by aluminum-tolerant and aluminumsensitive soybeans in acid soil. Plant Soil Environ. 58: 262-267. https://doi.org/10.17221/652/2011-PSE
- Li YL, Fan XR, Shen QR. 2008. The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants. Plant Cell Environ. 31: 73-85. https://doi.org/10.1111/j.1365-3040.2007.01737.x
- Inceoglu O, Salles JF, van Overbeek L, van Elsas JD. 2010. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Appl. Environ. Microbiol. 76: 3675-3684. https://doi.org/10.1128/AEM.00040-10
- Lu GH, Tang CY, Hua XM, Cheng J, Wang GH, Zhu YL, et al. 2018. Effects of an EPSPS-transgenic soybean line ZUTS31 on rootassociated bacterial communities during field growth. PLoS One 13: e0192008. https://doi.org/10.1371/journal.pone.0192008
- Wen ZL, Yang MK, Du MH, Zhong ZZ, Lu YT, Wang GH, et al. 2019. Enrichments/Derichments of root-associated bacteria related to plant growth and nutrition caused by the growth of an EPSPS-Transgenic maize line in the field. Front. Microbiol. 10: 1335. . https://doi.org/10.3389/fmicb.2019.01335
- Lu GH, Zhu YL, Kong LR, Cheng J, Tang CY, Hua XM, et al. 2017. Impact of a glyphosate-tolerant soybean line on the rhizobacteria, revealed by Illumina MiSeq. J. Microbiol. Biotechnol. 27: 561-572. https://doi.org/10.4014/jmb.1609.09008
- Kennedy K, Hall MW, Lynch MDJ, Moreno-Hagelsieb G, Neufeld JD. 2014. Evaluating bias of illumina-based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol. 80: 5717-5722. https://doi.org/10.1128/AEM.01451-14
- Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79: 5112-5120. https://doi.org/10.1128/AEM.01043-13
- Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6: 1621-1624. https://doi.org/10.1038/ismej.2012.8
- Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998. https://doi.org/10.1038/nmeth.2604
- Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200. https://doi.org/10.1093/bioinformatics/btr381
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
- Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. 2009. Introducing mothur: open-source, platformindependent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75: 7537-7541. https://doi.org/10.1128/AEM.01541-09
- Bulgarelli D, Garrido-Oter R, Munch PC, Weiman A, Droge J, Pan Y, et al. 2015. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17: 392-403. https://doi.org/10.1016/j.chom.2015.01.011
- Zhou JZ, Wu LY, Deng Y, Zhi XY, Jiang YH, Tu QC, et al. 2011. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 5: 1303-1313. https://doi.org/10.1038/ismej.2011.11
- Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112: E911-920. https://doi.org/10.1073/pnas.1414592112
- Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P. 2001. Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl. Environ. Microbiol. 67: 725-732. https://doi.org/10.1128/AEM.67.2.725-732.2001
- Griffith JC, Lee WG, Orlovich DA, Summerfield TC. 2017. Contrasting bacterial communities in two indigenous Chionochloa (Poaceae) grassland soils in New Zealand. PLoS One 12: e0179652. https://doi.org/10.1371/journal.pone.0179652
- Huang SC, Wang XD, Liu X, He GH, Wu JC. 2018. Isolation, identification, and characterization of an aluminum-tolerant bacterium Burkholderia sp. SB1 from an acidic red soil. Pedosphere 28: 905-912. https://doi.org/10.1016/S1002-0160(17)60390-4
- Ash C, Priest FG, Collins MD. 1993. Molecular-identification of ribosomal-Rna group 3 Bacilli (Ash, Farrow, Wallbanks And Collins) using a Pcr probe test - proposal for the creation of a new genus Paenibacillus. Anton. Van Leeuwenhoek 64: 253-260. https://doi.org/10.1007/BF00873085
- Gardener BBM. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94: 1252-1258. https://doi.org/10.1094/PHYTO.2004.94.11.1252
- Montes MJ, Mercade E, Bozal N, Guinea J. 2004. Paenibacillus antarcticus sp nov., a novel psychrotolerant organism from the Antarctic environment. Int. J. Syst. Evol. Microbiol. 54: 1521-1526. https://doi.org/10.1099/ijs.0.63078-0
- Jie OY, Pei ZH, Lutwick L, Dalal S, Yang LY, Cassai N, et al. 2008. Paenibacillus thiaminolyticus: A new cause of human infection, inducing bacteremia in a patient on hemodialysis. Ann. Clin. Lab. Sci. 38: 393-400.
- Berge O, Guinebretiere MH, Achouak W, Normand P, Heulin T. 2002. Paenibacillus graminis sp nov and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int. J. Syst. Evol. Microbiol. 52: 607-616. https://doi.org/10.1099/00207713-52-2-607
- Valverde A, Peix A, Rivas R, Velazquez E, Salazar S, Santa-Regina I, et al. 2008. Paenibacillus castaneae sp nov., isolated from the phyllosphere of Castanea sativa Miller. Int. J. Syst. Evol. Microbiol. 58: 2560-2564. https://doi.org/10.1099/ijs.0.65663-0
- Achouak W, Sutra L, Heulin T, Meyer JM, Fromin N, Degraeve S, et al. 2000. Pseudomonas brassicacearum sp nov and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int. J. Syst. Evol. Microbiol. 50: 9-18. https://doi.org/10.1099/00207713-50-1-9
- Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ. 2007. Pseudomonas brassicacearum strain Am3 containing 1- aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J. Exp. Bot. 58: 1485-1495. https://doi.org/10.1093/jxb/erm010
- Busse HJ. 2016. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int. J. Syst. Evol. Microbiol. 66: 9-37. https://doi.org/10.1099/ijsem.0.000702
- Yan Y, Kuramae EE, de Hollander M, Klinkhamer PGL, van Veen JA. 2017. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 11: 56-66. https://doi.org/10.1038/ismej.2016.108
- Apprill A, McNally S, Parsons R, Weber L. 2015. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75: 129-137. https://doi.org/10.3354/ame01753
- Parada AE, Needham DM, Fuhrman JA. 2016. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18: 1403-1414. https://doi.org/10.1111/1462-2920.13023
- Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al.2016. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 22: e00009-15.
- Snijders AM, Langley SA, Kim YM, Brislawn CJ, Noecker C, Zink EM, et al. 2017. Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome. Nat. Microbiol. 2: 16221. https://doi.org/10.1038/nmicrobiol.2016.221