DOI QR코드

DOI QR Code

Trends in Rapid Detection Methods for Marine Organism-derived Toxins

해양 생물 유래 독소의 나노 기술 기반 신속 진단법 개발 동향

  • Park, Chan Yeong (Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University) ;
  • Kweon, So Yeon (Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University) ;
  • Moon, Sunhee (Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University) ;
  • Kim, Min Woo (Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University) ;
  • Ha, Sang-Do (Department of Food Science and Biotechnology, School of Food Science and Technology, Chung-Ang University) ;
  • Park, Jong Pil (Department of Food Science and Biotechnology, School of Food Science and Technology, Chung-Ang University) ;
  • Park, Tae Jung (Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University)
  • Received : 2020.08.14
  • Accepted : 2020.08.20
  • Published : 2020.08.30

Abstract

Marine organism-derived toxins have negative effects not only on human health but also in aquaculture, fisheries, and marine ecosystems. However, traditional analytical methods are insufficient in preventing this threat. In this paper, we reviewed new rapid methods of toxin detection, which have been improved by adopting diverse types of nanomaterials and technologies. Moreover, we herein describe the main strategies for toxin detection and their related sensing performance. Notably, to popularize and commercialize these newly developed technologies, simplifying the process of pre-treating real samples real samples is very important. As part of these efforts, numerous studies have reported pretreatment methods based on the antibody-immobilized magnetic nanoparticles, and some cases have applied nanoparticles to enhance the sensing performance by utilizing the intrinsic catalytic activity. Furthermore, some reports have introduced fluorescent nanoparticles, such as quantum dots, to represent the lower detection limits of conventional enzyme-based colorimetric methods and lateral flow assays. Some studies using electrochemical measurements based on aptamer-nanoparticle complexes have also been announced. In addition, as the response to new toxins generated by changes in the marine environment is still lacking, further research on diagnostic and detection is also greatly needed for these kinds of marine toxins and their derivatives.

해양 생물 유래 독소는 그 치명적인 유독성으로 인해 비단 인류의 건강 뿐만 아니라 양식, 어업, 해양 생태계 전반에 걸쳐 경제적 손실을 비롯한 부정적인 영향을 미친다. 하지만, 종래에 사용되던 해양 독소 검출법만으로는 이를 다 파악하여 위협을 미연에 방지하기에는 아직 부족한 실정이다. 본 논문에서는 해산물의 해양 독소 잔존 여부를 판별하기 위해 종래에 사용되었던 시험법들의 한계를 개선하고자 각종 나노 재료 및 신규 기술들이 도입된 신속 검출법들에 대해 조사했으며, 대표적인 연구 결과들을 선정하여 사용한 나노 입자 및 전략에 대해 서술하였다. 특히 이러한 생물 유래 독소의 검출 기술을 대중화시키고 상용화하기 위해서는, 이를 생성하는 생물군으로부터 독소를 추출하는 전처리 과정을 간소화하는 것이 매우 중요하다. 해당 문제를 해결하고자 다양한 연구에서 표적 독소와 특이적으로 결합하는 항체를 고정화한 자성 나노 입자 기반의 전처리법을 보고했으며, 더 나아가 자성 나노 입자의 촉매 특성까지 활용해 검출 감도를 높이는 다양한 연구들도 발표되었다. 또한, 기존 효소 기반의 비색법의 검출 한계를 낮추고 검출 시스템의 안정성을 높이기 위해 양자점과 같은 형광 나노 입자를 도입하는 보고들도 있었다. 이 외에도 압타머와 나노 입자 복합체 기반의 전기화학 측정법 및 신규 기술들을 사용하고자 하는 연구들도 보고되었다. 하지만 해양 환경의 변화에 따라 생성된 신종 독소에 대한 대처는 아직 미흡한 실정이므로, 해양 독소 유도체 또한 아울러 진단 가능한 검출 기술에 대한 후속 연구가 필요하다.

Keywords

References

  1. Hosomi, R., Yoshida, M., Fukunaga, K., Seafood consumption and components for health, Glob. J. Health Sci., 4, 72-86 (2012). https://doi.org/10.5539/gjhs.v4n3p72
  2. Guillen, J., Natale, F., Carvalho, N., Casey, J., Hofherr, J., Druon, J.N., Fiore, G., Gibin, M., Zanzi, A., Martinsohn, J.T., Global seafood consumption footprint, Ambio, 48, 111-122 (2019). https://doi.org/10.1007/s13280-018-1060-9
  3. Wang, Q., Fang, J.R., Cao, D.X., Li, H.B., Su, K.Q., Hu, N., Wang, P., An improved functional assay for rapid detection of marine toxins, saxitoxin and brevetoxin using a portable cardiomyocyte-based potential biosensor, Biosens. Bioelectron., 72, 10-17 (2015). https://doi.org/10.1016/j.bios.2015.04.028
  4. Vilarino, N., Louzao, M.C., Vieytes, M.R., Botana, L.M., Biological methods for marine toxin detection, Anal. Bioanal. Chem., 397, 1673-1681 (2010). https://doi.org/10.1007/s00216-010-3782-9
  5. Mok, J.S., Song, K.C., Lee, K.J., Kim, J.H., Variation and profile of paralytic shellfish poisoning toxins in Jinhae bay, Korea, Fish. Aquat. Sci., 16, 137-142 (2013). https://doi.org/10.5657/FAS.2013.0137
  6. Baek, S.H., First report for appearance and distribution patterns of the epiphytic dinoflagellates in the Korean peninsula, Korean J. Environ. Biol., 30, 355-361 (2012). https://doi.org/10.11626/KJEB.2012.30.4.355
  7. Ha, K.S., Shim, K.B., Yoo, H.D., Kim, J.H., Lee, T.S., Evaluation of the bacteriological safety for the shellfish growing area in Hansan.Geojeman, Korea, Kor. J. Fish. Aquat. Sci., 42, 449-455 (2009). https://doi.org/10.5657/kfas.2009.42.5.449
  8. Yoo, H.D., Ha, K.S., Shim, K.B., Kang, J.Y., Lee, T.S., Kim, J.H., Microbiological quality of the shellfish-growing waters and mussels in Changseon, Namhae, Korea, Kor. J. Fish. Aquat. Sci., 43, 298-306 (2010). https://doi.org/10.5657/kfas.2010.43.4.298
  9. Bodero, M., Gerssen, A., Portier, L., Klijnstra, M.D., Hoogenboom, R.L., Guzman, L., Hendriksen, P.J., Bovee, T.F., A strategy to replace the mouse bioassay for detecting and identifying lipophilic marine biotoxins by combining the Neuro-2a bioassay and LC-MS/MS analysis, Mar. Drugs, 16, 501-515 (2018). https://doi.org/10.3390/md16120501
  10. Gao, S., Zheng, X., Hu, B., Sun, M., Wu, J., Jiao, B., Wang, L., Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin, Biosens. Bioelectron., 89, 952-958 (2017). https://doi.org/10.1016/j.bios.2016.09.085
  11. Rodriguez, I., Vieytes, M.R., Alfonso, A., Analytical challenges for regulated marine toxins. Detection methods, Curr. Opin. Food Sci., 18, 29-36 (2017). https://doi.org/10.1016/j.cofs.2017.10.008
  12. Kafa, N., Hani, Y., El Mhamedi, A., Sustainability performance measurement for green supply chain management, IFAC Proceedings Volumes, 46, 71-78 (2013). https://doi.org/10.3182/20130911-3-BR-3021.00050
  13. Crowther, J.R., 2000. The ELISA guidebook, Humana Press, Totowa, NJ, USA, pp. 1-8.
  14. Waritani, T., Chang, J., McKinney, B., Terato, K., An ELISA protocol to improve the accuracy and reliability of serological antibody assays, MethodsX, 4, 153-165 (2017). https://doi.org/10.1016/j.mex.2017.03.002
  15. Labus, K., Wolanin, K., Radosinski, L., Comparative study on enzyme immobilization using natural hydrogel matrices-experimental studies supported by molecular models analysis, Catalysts, 10, 489-512 (2020). https://doi.org/10.3390/catal10050489
  16. Hosseini, S., Vázquez-Villegas, P., Rito-Palomares, M., Martinez-Chapa, S.O., 2018. Advantages, disadvantages and modifications of conventional ELISA, Springer, Singapore, pp. 67-115.
  17. Campas, M., Reverte, J., Rambla Alegre, M., Campbell, K., Gerssen, A., Diogene, J., A fast magnetic bead-based colorimetric immunoassay for the detection of tetrodotoxins in shellfish, Food Chem. Toxicol., 140, 111315 (2020). https://doi.org/10.1016/j.fct.2020.111315
  18. Lai, W., Wei, Q., Zhuang, J., Lu, M., Tang, D., Fenton reaction-based colorimetric immunoassay for sensitive detection of brevetoxin B, Biosens. Bioelectron., 80, 249-256 (2016). https://doi.org/10.1016/j.bios.2016.01.088
  19. Tan, C., Gao, N., Deng, Y., Deng, J., Zhou, S., Li, J., Xin, X., Radical induced degradation of acetaminophen with $Fe_3O_4$ magnetic nanoparticles as heterogeneous activator of peroxymonosulfate, J. Hazard. Mater., 276, 452-460 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.068
  20. Tsai, T.T., Huang, T.H., Chen, C.A., Ho, N.Y.J., Chou, Y.J., Chen, C.F., Development a stacking pad design for enhancing the sensitivity of lateral flow immunoassay, Sci. Rep., 8, 1-10 (2018). https://doi.org/10.1038/s41598-017-17765-5
  21. Goux, H.J., Raja, B., Kourentzi, K., Trabuco, J.R., Vu, B.V., Paterson, A.S., Kirkpatrick, A., Townsend, B., Lee, M., Truong, V.T.T., Evaluation of a nanophosphor lateral-flow assay for self-testing for herpes simplex virus type 2 seropositivity, PLoS One, 14, e0225365 (2019). https://doi.org/10.1371/journal.pone.0225365
  22. Koczula, K.M., Gallotta, A., Lateral flow assays, Essays Biochem., 60, 111-120 (2016). https://doi.org/10.1042/EBC20150012
  23. Shen, H., Xu, F., Xiao, M., Fu, Q., Cheng, Z., Zhang, S., Huang, C., Tang, Y., A new lateral-flow immunochromatographic strip combined with quantum dot nanobeads and gold nanoflowers for rapid detection of tetrodotoxin, Analyst, 142, 4393-4398 (2017). https://doi.org/10.1039/C7AN01227F
  24. Ivase, T.J.P., Nyakuma, B.B., Oladokun, O., Abu, P.T., Hassan, M.N., Review of the principal mechanisms, prospects, and challenges of bioelectrochemical systems, Environ. Prog. Sustain. Energy, 39, 13298-13306 (2020). https://doi.org/10.1002/ep.13298
  25. Eissa, S., Siaj, M., Zourob, M., Aptamer-based competitive electrochemical biosensor for brevetoxin-2, Biosens. Bioelectron., 69, 148-154 (2015). https://doi.org/10.1016/j.bios.2015.01.055
  26. Eissa, S., Ng, A., Siaj, M., Tavares, A.C., Zourob, M., Selection and identification of DNA aptamers against okadaic acid for biosensing application, Anal. Chem., 85, 11794-11801 (2013). https://doi.org/10.1021/ac402220k
  27. Zhao, Z., Chen, H., Ma, L., Liu, D., Wang, Z., A label-free electrochemical impedance aptasensor for cylindrospermopsin detection based on thionine-graphene nanocomposites, Analyst, 140, 5570-5577 (2015). https://doi.org/10.1039/C5AN00704F
  28. Hou, L., Jiang, L., Song, Y., Ding, Y., Zhang, J., Wu, X., Tang, D., Amperometric aptasensor for saxitoxin using a gold electrode modified with carbon nanotubes on a selfassembled monolayer, and methylene blue as an electrochemical indicator probe, Microchim. Acta., 183, 1971-1980 (2016). https://doi.org/10.1007/s00604-016-1836-1
  29. Leonardo, S., Rambla Alegre, M., Samdal, I.A., Miles, C.O., Kilcoyne, J., Diogene, J., O'Sullivan, C.K., Campas, M., Immunorecognition magnetic supports for the development of an electrochemical immunoassay for azaspiracid detection in mussels, Biosens. Bioelectron., 92, 200-206 (2017). https://doi.org/10.1016/j.bios.2017.02.015
  30. Leonardo, S., Kiparissis, S., Rambla Alegre, M., Almarza, S., Roque, A., Andree, K.B., Christidis, A., Flores, C., Caixach, J., Campbell, K., Detection of tetrodotoxins in juvenile pufferfish Lagocephalus sceleratus (Gmelin, 1789) from the North Aegean Sea (Greece) by an electrochemical magnetic bead-based immunosensing tool, Food Chem., 290, 255-262 (2019). https://doi.org/10.1016/j.foodchem.2019.03.148
  31. Pan, Y., Wan, Z., Zhong, L., Li, X., Wu, Q., Wang, J., Wang, P., Label-free okadaic acid detection using growth of gold nanoparticles in sensor gaps as a conductive tag, Biomed. Microdevices, 19, 33-40 (2017). https://doi.org/10.1007/s10544-017-0162-7
  32. Eissa, S., Ng, A., Siaj, M., Zourob, M., Label-free voltammetric aptasensor for the sensitive detection of microcystin-LR using graphene-modified electrodes, Anal. Chem., 86, 7551-7557 (2014). https://doi.org/10.1021/ac501335k
  33. Singh, M., Kaur, N., Comini, E., The role of self-assembled monolayers in electronic devices, J. Mater. Chem. C, 8, 3938-3955 (2020). https://doi.org/10.1039/D0TC00388C
  34. Nerngchamnong, N., Yuan, L., Qi, D.C., Li, J., Thompson, D., Nijhuis, C.A., The role of van der Waals forces in the performance of molecular diodes, Nat. Nanotechnol., 8, 113-118 (2013). https://doi.org/10.1038/nnano.2012.238
  35. Leonardo, S., Toldra, A., Rambla Alegre, M., Fernandez Tejedor, M., Andree, K.B., Ferreres, L., Campbell, K., Elliott, C.T., O'Sullivan, C.K., Pazos, Y., Self-assembled monolayer-based immunoassays for okadaic acid detection in seawater as monitoring tools, Mar. Environ. Res., 133, 6-14 (2018). https://doi.org/10.1016/j.marenvres.2017.11.004
  36. Quan, P.L., Sauzade, M., Brouzes, E., dPCR: A technology review, Sensors, 18, 1271-1298 (2018). https://doi.org/10.3390/s18041271
  37. Lim, D.R., Kim, H.R., Park, M.J., Chae, H.G., Ku, B.K., Nah, J.J., Ryoo, S.Y., Wee, S.H., Park, Y.R., Jeon, H.S., An improved reverse transcription loop-mediated isothermal amplification assay for sensitive and specific detection of serotype O foot-and-mouth disease virus, J. Virol. Methods, 260, 6-13 (2018). https://doi.org/10.1016/j.jviromet.2018.06.017
  38. de Souza, D.F., da Silva, P.P.F., Fontenele, L.F.A., Barbosa, G.D., de Oliveira Jesus, M., Efficiency, quality, and environmental impacts: A comparative study of residential artificial lighting, Energy Rep., 5, 409-424 (2019). https://doi.org/10.1016/j.egyr.2019.03.009
  39. Geng, T., Novak, R., Mathies, R.A., Single-cell forensic short tandem repeat typing within microfluidic droplets, Anal. Chem., 86, 703-712 (2014). https://doi.org/10.1021/ac403137h
  40. Wood Bouwens, C., Lau, B.T., Handy, C.M., Lee, H., Ji, H.P., Single-color digital PCR provides high-performance detection of cancer mutations from circulating DNA, J. Mol. Diagn., 19, 697-710 (2017). https://doi.org/10.1016/j.jmoldx.2017.05.003
  41. Lee, H.G., Kim, H.M., Min, J., Park, C., Jeong, H.J., Lee, K., Kim, K.Y., Quantification of the paralytic shellfish poisoning dinoflagellate Alexandrium species using a digital PCR, Harmful Algae, 92, 101726 (2020). https://doi.org/10.1016/j.hal.2019.101726
  42. Kim, J.S., Park, K.W., Youn, S.H., Lim, W.A., Yoo, Y.D., Seong, K.A., Yih, W.H., Species diversity of the dinoflagellate genus Alexandrium in the coastal waters of Korea during summer 2013, The Sea, 21, 158-170 (2016). https://doi.org/10.7850/jkso.2016.21.4.158
  43. Martin Gracia, B., Martin Barreiro, A., Cuestas Ayllon, C., Grazu, V., Line, A., Llorente, A., de la Fuente, J.M., Moros, M., Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies, J. Mat. Chem. B, 8, 6710-6738 (2020). https://doi.org/10.1039/D0TB00861C
  44. Wu, X., Chen, G., Shen, J., Li, Z., Zhang, Y., Han, G., Upconversion nanoparticles: a versatile solution to multiscale biological imaging, Bioconjugate Chem., 26, 166-175 (2015). https://doi.org/10.1021/bc5003967
  45. Mocan, T., Matea, C.T., Pop, T., Mosteanu, O., Buzoianu, A.D., Puia, C., Iancu, C., Mocan, L., Development of nanoparticle-based optical sensors for pathogenic bacterial detection, J. Nanobiotechnol., 15, 25-39 (2017). https://doi.org/10.1186/s12951-017-0260-y
  46. Sun, A.L., Chai, J.Y., Xiao, T.T., Shi, X.Z., Li, X.J., Zhao, Q.L., Li, D.X., Chen, J., Development of a selective fluorescence nanosensor based on molecularly imprinted-quantum dot optosensing materials for saxitoxin detection in shellfish samples, Sens. Actuator B-Chem., 258, 408-414 (2018). https://doi.org/10.1016/j.snb.2017.11.143
  47. Bera, D., Qian, L., Tseng, T.K., Holloway, P.H., Quantum dots and their multimodal applications: A review, Materials, 3, 2260-2345 (2010). https://doi.org/10.3390/ma3042260
  48. Zhu, Y., Li, L., Zhang, C.G., Casillas, G., Sun, Z.Z., Yan, Z., Ruan, G.D., Peng, Z.W., Raji, A.R.O., Kittrell, C., Hauge, R.H., Tour, J.M., A seamless three-dimensional carbon nanotube graphene hybrid material, Nat. Commun., 3, 1-7 (2012).
  49. Baig, N., Ihsanullah, Sajid, M., Saleh, T.A., Graphene-based adsorbents for the removal of toxic organic pollutants: A review, J. Environ. Manage., 244, 370-382 (2019). https://doi.org/10.1016/j.jenvman.2019.05.047
  50. Hu, X.G., Mu, L., Wen, J.P., Zhou, Q.X., Immobilized smart RNA on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water, J. Hazard. Mater., 213, 387-392 (2012). https://doi.org/10.1016/j.jhazmat.2012.02.012
  51. Wang, Q., Fang, J.R., Cao, D.X., Li, H.B., Su, K.Q., Hu, N., Wang, P., An improved functional assay for rapid detection of marine toxins, saxitoxin and brevetoxin using a portable cardiomyocyte-based potential biosensor, Biosens. Bioelectron., 72, 10-17 (2015). https://doi.org/10.1016/j.bios.2015.04.028
  52. Ling, S.M., Xiao, S.W., Xie, C.J., Wang, R.Z., Zeng, L.M., Wang, K., Zhang, D.P., Li, X.L., Wang, S.H., Preparation of monoclonal antibody for brevetoxin 1 and development of ic-elisa and colloidal gold strip to detect brevetoxin 1, Toxins, 10, 75-85 (2018). https://doi.org/10.3390/toxins10020075
  53. Cao, C.T., Li, P., Liao, H.M., Wang, J.P., Tang, X.H., Yang, L.B., Cys-functionalized AuNP substrates for improved sensing of the marine toxin STX by dynamic surfaceenhanced Raman spectroscopy, Anal. Bioanal. Chem., 412, 4609-4617 (2020). https://doi.org/10.1007/s00216-020-02710-9
  54. Molinero Abad, B., Perez, L., Izquierdo, D., Escudero, I., Arcos-Martinez, M.J., Sensor system based on flexible screen-printed electrodes for electrochemical detection of okadaic acid in seawater, Talanta, 192, 347-352 (2019). https://doi.org/10.1016/j.talanta.2018.09.072
  55. Zhang, Z.X., Zhang, C.Y., Luan, W.X., Li, X.F., Liu, Y., Luo, X.L., Ultrasensitive and accelerated detection of ciguatoxin by capillary electrophoresis via on-line sandwich immunoassay with rotating magnetic field and nanoparticles signal enhancement, Anal. Chim. Acta, 888, 27-35 (2015). https://doi.org/10.1016/j.aca.2015.06.018
  56. Elshafey, R., Siaj, M., Zourob, M., DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a, Biosens. Bioelectron., 68, 295-302 (2015). https://doi.org/10.1016/j.bios.2015.01.002
  57. Wang, R.Z., Zhong, Y.F., Wang, J.C., Yang, H., Yuan, J., Wang, S.H., Development of an ic-ELISA and immunochromatographic strip based on IgG antibody for detection of omega-conotoxin MVIIA, J. Hazard. Mater., 378, 120510 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.129