DOI QR코드

DOI QR Code

Influence of implant mucosal thickness on early bone loss: a systematic review with meta-analysis

  • Di Gianfilippo, Riccardo (Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry) ;
  • Valente, Nicola Alberto (Department of Stomatology, University of Seville Faculty of Dentistry) ;
  • Toti, Paolo (Department of Multidisciplinary Regenerative Research, Guglielmo Marconi University) ;
  • Wang, Hom-Lay (Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry) ;
  • Barone, Antonio (Unit of Oral Surgery, Department of Surgical, Medical, Molecular and Critical Needs Pathologies, University of Pisa)
  • Received : 2019.09.19
  • Accepted : 2020.05.14
  • Published : 2020.08.30

Abstract

Purpose: Marginal bone loss (MBL) is an important clinical issue in implant therapy. One feature that has been cited as a contributing factor to this bone loss is peri-implant mucosal thickness. Therefore, in this report, we conducted a systematic review of the literature comparing bone remodeling around implants placed in areas with thick (≥2-mm) vs. thin (<2-mm) mucosa. Methods: A PICO question was defined. Manual and electronic searches were performed of the MEDLINE/PubMed and Cochrane Oral Health Group databases. The inclusion criteria were prospective studies that documented soft tissue thickness with direct intraoperative measurements and that included at least 1 year of follow-up. When possible, a meta-analysis was performed for both the overall and subgroup analyses. Results: Thirteen papers fulfilled the inclusion criteria. A meta-analysis of 7 randomized clinical trials was conducted. Significantly less bone loss was found around implants with thick mucosa than around those with thin mucosa (difference, -0.53 mm; P<0.0001). Subgroups were analyzed regarding the apico-coronal positioning, the use of platform-matched vs. platform-switched (PS) connections, and the use of cement-retained vs. screw-retained prostheses. In these analyses, thick mucosa was found to be associated with significantly less MBL than thin mucosa (P<0.0001). Among non-matching (PS) connections and screw-retained prostheses, bone levels were not affected by mucosal thickness. Conclusions: Soft tissue thickness was found to be correlated with MBL except in cases of PS connections used on implants with thin tissues and screw-retained prostheses. Mucosal thickness did not affect implant survival or the occurrence of biological or aesthetic complications.

Keywords

References

  1. Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol 2002;29 Suppl 3:197-212. https://doi.org/10.1034/j.1600-051X.29.s3.12.x
  2. Hammerle CH, Tarnow D. The etiology of hard- and soft-tissue deficiencies at dental implants: a narrative review. J Periodontol 2018;89 Suppl 1:S291-303. https://doi.org/10.1002/JPER.16-0810
  3. Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. J Periodontol 2001;72:1372-83. https://doi.org/10.1902/jop.2001.72.10.1372
  4. Broggini N, McManus LM, Hermann JS, Medina R, Schenk RK, Buser D, et al. Peri-implant inflammation defined by the implant-abutment interface. J Dent Res 2006;85:473-8. https://doi.org/10.1177/154405910608500515
  5. Piattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. Role of the microgap between implant and abutment: a retrospective histologic evaluation in monkeys. J Periodontol 2003;74:346-52. https://doi.org/10.1902/jop.2003.74.3.346
  6. Hammerle CH, Bragger U, Burgin W, Lang NP. The effect of subcrestal placement of the polished surface of ITI implants on marginal soft and hard tissues. Clin Oral Implants Res 1996;7:111-9. https://doi.org/10.1034/j.1600-0501.1996.070204.x
  7. Wiskott HW, Belser UC. Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res 1999;10:429-44. https://doi.org/10.1034/j.1600-0501.1999.100601.x
  8. Barboza EP, Caula AL, Carvalho WR. Crestal bone loss around submerged and exposed unloaded dental implants: a radiographic and microbiological descriptive study. Implant Dent 2002;11:162-9. https://doi.org/10.1097/00008505-200204000-00018
  9. Lindhe J, Meyle J; Group D of European Workshop on Periodontology. Peri-implant diseases: consensus report of the Sixth European Workshop on Periodontology. J Clin Periodontol 2008;35:282-5. https://doi.org/10.1111/j.1600-051X.2008.01283.x
  10. Wilson TG Jr. The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study. J Periodontol 2009;80:1388-92. https://doi.org/10.1902/jop.2009.090115
  11. Canullo L, Tallarico M, Penarrocha-Oltra D, Monje A, Wang HL, Penarrocha-Diago M. Implant abutment cleaning by plasma of argon: 5-year follow-up of a randomized controlled trial. J Periodontol 2016;87:434-42. https://doi.org/10.1902/jop.2015.150549
  12. Berglundh T, Lindhe J. Dimension of the periimplant mucosa. Biological width revisited. J Clin Periodontol 1996;23:971-3. https://doi.org/10.1111/j.1600-051X.1996.tb00520.x
  13. Puisys A, Linkevicius T. The influence of mucosal tissue thickening on crestal bone stability around bone-level implants. A prospective controlled clinical trial. Clin Oral Implants Res 2015;26:123-9. https://doi.org/10.1111/clr.12301
  14. Gargiulo AW, Wentz FM, Orban B. Dimensions and relations of dentogingival junction in humans. J Periodontol 1961;32:261-7. https://doi.org/10.1902/jop.1961.32.3.261
  15. Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B, Thomsen P. The soft tissue barrier at implants and teeth. Clin Oral Implants Res 1991;2:81-90. https://doi.org/10.1034/j.1600-0501.1991.020206.x
  16. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (II). Etiopathogenesis. Eur J Oral Sci 1998;106:721-64. https://doi.org/10.1046/j.0909-8836..t01-6-.x
  17. Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur J Oral Sci 1998;106:527-51. https://doi.org/10.1046/j.0909-8836..t01-2-.x
  18. Linkevicius T, Apse P. Biologic width around implants. An evidence-based review. Stomatologija 2008;10:27-35.
  19. Linkevicius T, Puisys A, Svediene O, Linkevicius R, Linkeviciene L. Radiological comparison of laser-microtextured and platform-switched implants in thin mucosal biotype. Clin Oral Implants Res 2015;26:599-605. https://doi.org/10.1111/clr.12544
  20. Linkevicius T, Apse P, Grybauskas S, Puisys A. The influence of soft tissue thickness on crestal bone changes around implants: a 1-year prospective controlled clinical trial. Int J Oral Maxillofac Implants 2009;24:712-9.
  21. Annibali S, Bignozzi I, Cristalli MP, Graziani F, La Monaca G, Polimeni A. Peri-implant marginal bone level: a systematic review and meta-analysis of studies comparing platform switching versus conventionally restored implants. J Clin Periodontol 2012;39:1097-113. https://doi.org/10.1111/j.1600-051X.2012.01930.x
  22. Strietzel FP, Neumann K, Hertel M. Impact of platform switching on marginal peri-implant bone-level changes. A systematic review and meta-analysis. Clin Oral Implants Res 2015;26:342-58. https://doi.org/10.1111/clr.12339
  23. Galindo-Moreno P, Leon-Cano A, Monje A, Ortega-Oller I, O'Valle F, Catena A. Abutment height influences the effect of platform switching on peri-implant marginal bone loss. Clin Oral Implants Res 2016;27:167-73.
  24. Vandeweghe S, De Bruyn H. A within-implant comparison to evaluate the concept of platform switching: a randomised controlled trial. Eur J Oral Implantology 2012;5:253-62.
  25. Canullo L, Iannello G, Penarocha M, Garcia B. Impact of implant diameter on bone level changes around platform switched implants: preliminary results of 18 months follow-up a prospective randomized match-paired controlled trial. Clin Oral Implants Res 2012;23:1142-6. https://doi.org/10.1111/j.1600-0501.2011.02297.x
  26. Moher D, Liberati A, Tetzlaff J, Altman DG, Group PPRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010;8:336-41. https://doi.org/10.1016/j.ijsu.2010.02.007
  27. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928. https://doi.org/10.1136/bmj.d5928
  28. Linkevicius T, Puisys A, Steigmann M, Vindasiute E, Linkeviciene L. Influence of vertical soft tissue thickness on crestal bone changes around implants with platform switching: a comparative clinical study. Clin Implant Dent Relat Res 2015;17:1228-36. https://doi.org/10.1111/cid.12222
  29. Canullo L, Camacho-Alonso F, Tallarico M, Meloni SM, Xhanari E, Penarrocha-Oltra D. Mucosa thickness and peri-implant crestal bone stability: a clinical and histologic prospective cohort trial. Int J Oral Maxillofac Implants 2017;32:675-81. https://doi.org/10.11607/jomi.5349
  30. Bruschi GB, Crespi R, Cappare P, Grande N, Bruschi E, Gherlone E. Radiographic evaluation of crestal bone levels of delayed implants at medium-term follow-up. Int J Oral Maxillofac Implants 2014;29:441-7. https://doi.org/10.11607/jomi.3254
  31. Jeong SM, Choi BH, Kim J, Xuan F, Lee DH, Mo DY, et al. A 1-year prospective clinical study of soft tissue conditions and marginal bone changes around dental implants after flapless implant surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111:41-6. https://doi.org/10.1016/j.tripleo.2010.03.037
  32. Linkevicius T, Apse P, Grybauskas S, Puisys A. Influence of thin mucosal tissues on crestal bone stability around implants with platform switching: a 1-year pilot study. J Oral Maxillofac Surg 2010;68:2272-7. https://doi.org/10.1016/j.joms.2009.08.018
  33. Linkevicius T, Apse P, Grybauskas S, Puisys A. Reaction of crestal bone around implants depending on mucosal tissue thickness. A 1-year prospective clinical study. Stomatologija 2009;11:83-91.
  34. Linkevicius T, Puisys A, Linkeviciene L, Peciuliene V, Schlee M. Crestal bone stability around implants with horizontally matching connection after soft tissue thickening: a prospective clinical trial. Clin Implant Dent Relat Res 2015;17:497-508. https://doi.org/10.1111/cid.12155
  35. van Eekeren P, van Elsas P, Tahmaseb A, Wismeijer D. The influence of initial mucosal thickness on crestal bone change in similar macrogeometrical implants: a prospective randomized clinical trial. Clin Oral Implants Res 2017;28:214-8.
  36. Bhat PR, Thakur SL, Kulkarni SS. The influence of soft tissue biotype on the marginal bone changes around dental implants: a 1-year prospective clinico-radiological study. J Indian Soc Periodontol 2015;19:640-4. https://doi.org/10.4103/0972-124X.168489
  37. Abrahamsson I, Berglundh T, Wennstrom J, Lindhe J. The peri-implant hard and soft tissues at different implant systems. A comparative study in the dog. Clin Oral Implants Res 1996;7:212-9. https://doi.org/10.1034/j.1600-0501.1996.070303.x
  38. Wood DL, Hoag PM, Donnenfeld OW, Rosenfeld LD. Alveolar crest reduction following full and partial thickness flaps. J Periodontol 1972;43:141-4. https://doi.org/10.1902/jop.1972.43.3.141
  39. Berglundh T, Abrahamsson I, Welander M, Lang NP, Lindhe J. Morphogenesis of the peri-implant mucosa: an experimental study in dogs. Clin Oral Implants Res 2007;18:1-8.
  40. Bengazi F, Lang NP, Caroprese M, Urbizo Velez J, Favero V, Botticelli D. Dimensional changes in soft tissues around dental implants following free gingival grafting: an experimental study in dogs. Clin Oral Implants Res 2015;26:176-82.
  41. Vervaeke S, Dierens M, Besseler J, De Bruyn H. The influence of initial soft tissue thickness on peri-implant bone remodeling. Clin Implant Dent Relat Res 2014;16:238-47. https://doi.org/10.1111/j.1708-8208.2012.00474.x
  42. Suarez-Lopez Del Amo F, Lin GH, Monje A, Galindo-Moreno P, Wang HL. Influence of soft tissue thickness on peri-implant marginal bone loss: a systematic review and meta-analysis. J Periodontol 2016;87:690-9. https://doi.org/10.1902/jop.2016.150571
  43. Akcali A, Trullenque-Eriksson A, Sun C, Petrie A, Nibali L, Donos N. What is the effect of soft tissue thickness on crestal bone loss around dental implants? A systematic review. Clin Oral Implants Res 2017;28:1046-53. https://doi.org/10.1111/clr.12916
  44. Kaminaka A, Nakano T, Ono S, Kato T, Yatani H. Cone-beam computed tomography evaluation of horizontal and vertical dimensional changes in buccal peri-implant alveolar bone and soft tissue: a 1-year prospective clinical study. Clin Implant Dent Relat Res 2015;17 Suppl 2:e576-85. https://doi.org/10.1111/cid.12286
  45. Hermann JS, Buser D, Schenk RK, Schoolfield JD, Cochran DL. Biologic Width around one- and two-piece titanium implants. Clin Oral Implants Res 2001;12:559-71. https://doi.org/10.1034/j.1600-0501.2001.120603.x
  46. Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. J Periodontol 2000;71:1412-24. https://doi.org/10.1902/jop.2000.71.9.1412
  47. Ercoli C, Jammal G, Buyers M, Tsigarida AA, Chochlidakis KM, Feng C, et al. Influence of apico-coronal implant placement on post-surgical crestal bone loss in humans. J Periodontol 2017;88:762-70. https://doi.org/10.1902/jop.2017.160802
  48. Telleman G, Raghoebar GM, Vissink A, Meijer HJ. Impact of platform switching on inter-proximal bone levels around short implants in the posterior region; 1-year results from a randomized clinical trial. J Clin Periodontol 2012;39:688-97. https://doi.org/10.1111/j.1600-051X.2012.01887.x
  49. Wittneben JG, Joda T, Weber HP, Bragger U. Screw retained vs. cement retained implant-supported fixed dental prosthesis. Periodontol 2000 2017;73:141-51. https://doi.org/10.1111/prd.12168
  50. Wittneben JG, Buser D, Salvi GE, Burgin W, Hicklin S, Bragger U. Complication and failure rates with implant-supported fixed dental prostheses and single crowns: a 10-year retrospective study. Clin Implant Dent Relat Res 2014;16:356-64. https://doi.org/10.1111/cid.12066
  51. Wilson TG Jr, Valderrama P, Burbano M, Blansett J, Levine R, Kessler H, et al. Foreign bodies associated with peri-implantitis human biopsies. J Periodontol 2015;86:9-15. https://doi.org/10.1902/jop.2014.140363
  52. Quaranta A, Lim ZW, Tang J, Perrotti V, Leichter J. The impact of residual subgingival cement on biological complications around dental implants: a systematic review. Implant Dent 2017;26:465-74. https://doi.org/10.1097/id.0000000000000593
  53. Weber HP, Kim DM, Ng MW, Hwang JW, Fiorellini JP. Peri-implant soft-tissue health surrounding cement- and screw-retained implant restorations: a multi-center, 3-year prospective study. Clin Oral Implants Res 2006;17:375-9. https://doi.org/10.1111/j.1600-0501.2005.01232.x

Cited by

  1. Peri-Implant Behavior of Tissue Level Dental Implants with a Convergent Neck vol.18, pp.10, 2021, https://doi.org/10.3390/ijerph18105232
  2. Design of customized soft‐tissue substitutes for posterior single‐tooth defects: A proof‐of‐concept in‐vitro study vol.32, pp.11, 2020, https://doi.org/10.1111/clr.13831